Show simple item record

dc.creatorBurzo, Andrea Mihaela
dc.date.accessioned2012-06-07T23:03:02Z
dc.date.available2012-06-07T23:03:02Z
dc.date.created2001
dc.date.issued2001
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2001-THESIS-B87
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references (leaves 48-51).en
dc.descriptionIssued also on microfiche from Lange Micrographics.en
dc.description.abstractThe present work is motivated in part by the increasing interest in a better understanding of the optical properties of InSb, the main material used to manufacture infrared detectors. In addition, there have been recent experimental studies of the behavior of InSb following application of ultra-short and ultra-intense laser pulses. Motivated directly by these experiments, we have performed simulations of the electron-ion dynamics of InSb subjected to femtosecond-scale laser pulses. These simulations employ a tight-binding approximation, and the time-dependent Schr[]dinger equation is solved with an adapted Cayley algorithm which conserves probability. The atomic forces are obtained from a generalized Hellmann-Feynman theorem, which may be also interpreted as a generalized Ehrenfest theorem. We find that above a certain threshold intensity the lattice loses its tetrahedral structure and becomes disrupted. In addition, the band gap collapses and the material becomes metallic. Comparison of our simulations with experiments involving measurements of the imaginary part of the dielectric function shows good agreement in all important aspects. Further investigation of microscopic quantities, such as the atomic pair correlation function, the occupancies of excited states, and the displacement of atoms from their initial positions, strengthens our conclusion that the semiconductor exhibits a nonthermal phase transition as the intensity of the laser pulse is increased.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectphysics.en
dc.subjectMajor physics.en
dc.titleElectronic and structural response of InSb to ultra-short and ultra-intense laser pulsesen
dc.typeThesisen
thesis.degree.disciplinephysicsen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access