Show simple item record

dc.creatorAkin, James Browning
dc.date.accessioned2012-06-07T23:02:10Z
dc.date.available2012-06-07T23:02:10Z
dc.date.created2001
dc.date.issued2001
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2001-THESIS-A376
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references (leaves 107-109).en
dc.descriptionIssued also on microfiche from Lange Micrographics.en
dc.description.abstractMunicipal solid waste landfills in the United States are built with a composite bottom liner consisting of a flexible membrane liner of high-density polyethylene overlying a compacted soil liner. Hydrocarbons have been shown to pass through the flexible membrane liner by diffusion. Flexible membrane liners often have flaws allowing direct contact between the leachate and the compacted soil liner. The transmission of hydrocarbons to the compacted soil liner presents a threat to groundwater supplies. The study was performed to determine if the modification of a compacted soil liner with a thermoplastic elastomer block copolymer could successfully sequester benzene, toluene, ethylbenzene, and xylenes and meet the United States Environmental Protection Agency's saturated hydraulic conductivity requirement of 1x10⁻⁷ cm sec⁻¹. Compacted Ships clay modified with 0, 1, 3, 5, and 10% weight of a thermoplastic elastomer block copolymer was tested for saturated hydraulic conductivity using 10.2 cm fixed wall permeameters. The compacted Ships clay met the United States Environmental Protection Agency's mandated saturated hydraulic conductivity of 10⁻⁷ cm sec⁻¹ at polymer contents of 3% (wt) polymer or less. The presence of dissolved aromatic hydrocarbons had no effect on the saturated hydraulic conductivity. The ability of the polymer to attenuate the transport of dilute aromatic hydrocarbons was tested by permeating the compacted soil/polymer treatments with a 0.01N CaSO4 solution contaminated with benzene, toluene, ethylbenzene, and xylenes. Leachate from permeameters packed with soil containing more than 1% (wt) polymer had BTEX concentrations below the drinking water standard for 3 or more pore volumes. The findings of this research were applied to a hypothetical compacted soil liner constructed with Ships clay modified to include 3% (wt) polymer and having a saturated hydraulic conductivity of 4.23 x 10⁻⁸ cm sec⁻¹. It was assumed that the soil liner was in direct contact with landfill leachate. The hypothetical liner would protect the groundwater from contamination above the maximum contamination limit for drinking water by benzene for 350 years, toluene for 140 years, and ethylbenzene for 260 years.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectsoil science.en
dc.subjectMajor soil science.en
dc.titleAttenuation of dilute aromatic hydrocarbon transport by a block copolymer in a compacted vertisolen
dc.typeThesisen
thesis.degree.disciplinesoil scienceen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access