Show simple item record

dc.creatorKim, Kyu-Sup
dc.date.accessioned2012-06-07T22:52:59Z
dc.date.available2012-06-07T22:52:59Z
dc.date.created1998
dc.date.issued1998
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-1998-THESIS-K567
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references: p. 59-61.en
dc.description.abstractAn adaptive mesh method for the simulation of parallel ics. Blade Vortex Interaction (BV1) with an active Trailing Edge Flap (TEF) is presented. The two-dimensional 1111-steady problem is solved by a higher order upwind Euler method for an unstructured mesh. A local mesh adaptation technique is employed to maintain vortex strength by capturing the details of the convecting vortex. The computational technique does not require any assumption on the vortex structure, and, therefore is suitable for close interaction of the vortex and the blade. The adaptive method is based on cell subdivisions and allows for frequent mesh adaptation due to its fast speed. To demonstrate the reduction of numerical dissipation of a vortex via mesh adaptation, we first consider a simple case with a convecting vortex in freestream. Finally, we apply tile techniques to examine the effectiveness of an active TEF on BVI in reducing the pressure perturbations at the airfoil leading edge. For the boundary motion due to TEF deployment, a local recessing procedure is utilized to maintain mesh quality by avoiding distorted mesh elements near the flap.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectaerospace engineering.en
dc.subjectMajor aerospace engineering.en
dc.titleAn adaptive mesh method for the simulation of Blade Vortex Interactionen
dc.typeThesisen
thesis.degree.disciplineaerospace engineeringen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access