Show simple item record

dc.creatorOngay, Reyhan
dc.date.accessioned2012-06-07T22:37:48Z
dc.date.available2012-06-07T22:37:48Z
dc.date.created1994
dc.date.issued1994
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-1994-THESIS-O581
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references.en
dc.description.abstractThe commercial production of L-uWtophan, an essential ainino acid for animal species and humans, depends largely on microbial processes due to drawback of chemical synthesis: the formation of a racemic mixture of DL-tryptophan. Biotransforrnation of chemically synthesized precursors or production by fermentation from inexpensive carbon and nitrogen sources are the major microbial production techniques used. Unfortunately, high production costs of both of these processes due to expensive precursors in the former and low yield in the latter hamper the expected large market of L-tryptophan. Most of the previous studies to improve the yield in fermentative processes have focused on varying the specific activity of key enzymes involved in L-tryptophan biosynthesis, in order to optimize production. However, very few attempts were made to optimize precursor levels in vivo . While investigation along this line was in progress in our laboratory, positive effects of transketolase (TktA) activity on aromatics production in Escherichia coli was reported by Draths et. al. In this study, we investigate the effects of overexpressing the tryptophan operon (TrpAE), 2-keto-3-deoxy-D-arabinoheptulosonate-7-phosphate (DAHP) synthase (AroG), TktA, phosphoenolpyruvate carboxykinase (Pck), and phosphoenolpyruvate synthase (Pps) in a suitable E. coli host cell. While overexpression of AroG alone with TrpAE improved L-tryptophan biosynthesis 28% over the basal level obtained from TrpAE overexpression only, overexpression of TktA together with AroG and TrpAE showed a 90% increase over the basal level. The overexpression of neither Pps, nor Pck did not improve Ltryptophan biosynthesis either with TrpAE or AroG and TktA. The effect of glutamine as an additional nitrogen source was studied: glutamine was not found to improve neither plasmid stability, nor tryptophan biosynthesis. We also compared the efficiency of glucose, xylose, 0.3% xylose+0.7% pyruvic acid and 0.3% xylose+0.7% glycerol as carbon sources for L-tryptophan biosynthesis. The experimental yield obtained from glucose, of 10% increased to 14% when xylose was used. In the overexpression of TrpAE only, the specific uwtophan concentration in the medium increased by 28% in xylose compared to glucose. Overexpression of either AroG or AroG with TktA had a negative effect on L-tryptophan biosynthesis in xylose medium. Use of 0.3% xylose+0.7% pyruvic acid and 0.3% xylose+0.7% glycerol as carbon sources did not improve tryptophan biosynthesis. We conclude that xylose, abundant in nature as a major component of lignocellulosic biomass, can be used more efficiently than glucose with overexpression of TzpAE only. On the other hand, TktA and AroG can be overexpressed together with TrpAE to get higher yields of tryptophan where glucose is favored as a carbon source.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectchemical engineering.en
dc.subjectMajor chemical engineering.en
dc.titleTryptophan biosynthesis by genetically engineered Escherichia coli utilizing different carbon sourcesen
dc.typeThesisen
thesis.degree.disciplinechemical engineeringen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access