Show simple item record

dc.creatorOwsenek, Brian Leonard
dc.date.accessioned2012-06-07T15:37:52Z
dc.date.available2012-06-07T15:37:52Z
dc.date.created1993
dc.date.issued1993
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-1993-THESIS-O97
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references.en
dc.description.abstractCorona wind heat transfer enhancement is a non-mechanical means of augmenting transfer coefficients in free and low-velocity convection flow fields. Ions formed near the surface of a high-voltage electrode are forced along the electric field lines toward the nearby ground, inducing fluid motion and thereby enhancing convection. This study examines experimentally the resultant heat transfer in the needle-plate, wire-plate and multiple wire-plate configurations. Heat transfer coefficients as high as 70 W/m2K are reported. Joule heating of the air is measured, and found to generate a temperature increases of up to 3'C. The optimum needle and wire heights are found, and the trends in wire-plate performance are examined. A numerical procedure for solving the coupled Poisson and charge conservation equations in the wire-plate geometry is developed. A non-dimensional parameter is defined which allows the dominance of electrostatic over buoyancy forces to be demonstrated. This allows the energy equation to be decoupled from the momentum equation. The SIMPLEC procedure with uneven grid spacing is used to model the resultant flow field. The energy equation is solved in order to calculate the resultant heat transfer coefficients. Excellent agreement between experimental and computed heat transfer coefficients is observed. Novel electrode configurations are considered, and two promising electrode designs are presented.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectmechanical engineering.en
dc.subjectMajor mechanical engineering.en
dc.titleAn experimental, theoretical and numerical investigation of corona wind heat transfer enhancementen
dc.typeThesisen
thesis.degree.disciplinemechanical engineeringen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access