Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A stochastic mixed integer programming approach to wildfire management systems

    Thumbnail
    View/ Open
    LEE-THESIS.pdf (450.2Kb)
    Date
    2009-06-02
    Author
    Lee, Won Ju
    Metadata
    Show full item record
    Abstract
    Wildfires have become more destructive and are seriously threatening societies and our ecosystems throughout the world. Once a wildfire escapes from its initial suppression attack, it can easily develop into a destructive huge fire that can result in significant loss of lives and resources. Some human-caused wildfires may be prevented; however, most nature-caused wildfires cannot. Consequently, wildfire suppression and contain- ment becomes fundamentally important; but suppressing and containing wildfires is costly. Since the budget and resources for wildfire management are constrained in reality, it is imperative to make important decisions such that the total cost and damage associated with the wildfire is minimized while wildfire containment effectiveness is maximized. To achieve this objective, wildfire attack-bases should be optimally located such that any wildfire is suppressed within the effective attack range from some bases. In addition, the optimal fire-fighting resources should be deployed to the wildfire location such that it is efficiently suppressed from an economic perspective. The two main uncertain/stochastic factors in wildfire management problems are fire occurrence frequency and fire growth characteristics. In this thesis two models for wildfire management planning are proposed. The first model is a strategic model for the optimal location of wildfire-attack bases under uncertainty in fire occurrence. The second model is a tactical model for the optimal deployment of fire-fighting resources under uncertainty in fire growth. A stochastic mixed-integer programming approach is proposed in order to take into account the uncertainty in the problem data and to allow for robust wildfire management decisions under uncertainty. For computational results, the tactical decision model is numerically experimented by two different approaches to provide the more efficient method for solving the model.
    URI
    https://hdl.handle.net/1969.1/ETD-TAMU-1801
    Subject
    Stochastic Programming
    Wildfire Management
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Lee, Won Ju (2006). A stochastic mixed integer programming approach to wildfire management systems. Master's thesis, Texas A&M University. Available electronically from https : / /hdl .handle .net /1969 .1 /ETD -TAMU -1801.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartmentType

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV