Show simple item record

dc.contributor.advisorGrau, James W.
dc.creatorPuga, Denise Alejandra
dc.date.accessioned2010-01-14T23:58:56Z
dc.date.accessioned2010-01-16T01:58:42Z
dc.date.available2010-01-14T23:58:56Z
dc.date.available2010-01-16T01:58:42Z
dc.date.created2007-08
dc.date.issued2009-05-15
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-1605
dc.description.abstractA substantial body of work exists to suggest that brain and spinal mechanisms react differently to nociceptive information. The current experiments were design to identify parallels and differences in the way the spinal cord processes nociceptive information, as compared to intact animals. In addition, pharmacological manipulations were employed to identify the opioid receptors activated by continuous shock, and to decipher at what synaptic level (e.g. pre or post synaptically) intermittent shock affects the release of endogenous opioids. A common dependent variable was used in all experiments to assess changes in nociceptive reactivity, the tail-flick test. The results revealed that intermittent and continuous stimulation have an opponent relationship on nociceptive processing in the isolated spinal cord. Continuous stimulation (3, 25-s continuous 1.5 mA tail-shocks) induced an antinociceptive response that was attenuated by prior exposure to brief (80 ms) intermittent shock (Experiment 1). When intermittent shock was given after continuous shock, intermittent shock failed to attenuate continuous shock-induced antinociception (Experiment 2). The impact of intermittent shock on continuous-shock induced antinociception decayed after 24 hours (Experiment 3). Intermittent and continuous shock enhanced the antinociceptive consequences of a moderate dose of systemic morphine (5 mg/kg) (Experiment 4). Continuous shock-induced antinociception was attenuated by equal molar concentrations of CTOP (µ opioid antagonist) and Nor-BNI (κ opioid antagonist), but not naltrindole (δ opioid antagonist) (Experiment 5). Intermittent shock failed to attenuate the antinociception induced by DAMGO (µ opioid agonist) or Dynorphin A (κ opioid agonist).en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectspinal corden
dc.subjectthermal reactivityen
dc.titleThe opponent consequences of intermittent and continuous stimulation within the rat spinal corden
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentPsychologyen
thesis.degree.disciplinePsychologyen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberMeagher, Mary W.
dc.contributor.committeeMemberMiranda, Rajesh
dc.type.genreElectronic Thesisen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record