Show simple item record

dc.contributor.advisorRussell, David H.
dc.creatorMcLean, Janel Renee
dc.date.accessioned2010-01-15T00:01:06Z
dc.date.accessioned2010-01-16T01:46:30Z
dc.date.available2010-01-15T00:01:06Z
dc.date.available2010-01-16T01:46:30Z
dc.date.created2007-08
dc.date.issued2009-05-15
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-1437
dc.description.abstractDefining the intrinsic properties of amino acids which dictate the formation of helices, the most common protein secondary structure element, is an essential part of understanding protein folding. Pauling and co-workers initially predicted helical peptide folding motifs in the absence of solvent, suggesting that in vacuo studies may potentially discern the role of solvation in protein structure. Ion mobility-mass spectrometry (IMMS) combines a gas-phase ion separation based on collision cross-section (apparent surface area) with time-of-flight MS. The result is a correlation of collision cross-section with mass-to-charge, allowing detection of multiple conformations of the same ion. Most gas-phase peptide ions assume a compact, globular state that minimizes exposure to the low dielectric environment and maximizes intramolecular charge solvation. Conversely, a small number of peptides adopt a more extended (β-sheet or α-helix) conformation and exhibit a larger than predicted collision cross-section. Collision cross-sections measured using IM-MS are correlated with theoretical models generated using simulated annealing and allow for assignment of the overall ion structural motif (e.g. helix vs. chargesolvated globule). Here, two series of model peptides having known solution-phase helical propensities, namely Ac-(AAKAA)nY-NH2 (n = 3, 4, 5, 6 and 7) and Ac-Y(AEAAKA)nF-NH2 (n = 2, 3, 4, and 5), are investigated using IM-MS. Both protonated ([M + H]+) and metalcoordinated ([M + X]+ where X = Li, Na, K, Rb or Cs) species were analyzed to better understand the interplay of forces involved in gas-phase helical structure and stability. The data are analyzed using computational methods to examine the influence of peptide length, primary sequence, and number of basic (Lys, K) and acidic (Glu, E) residues on anhydrous ion structure.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjection mobilityen
dc.subjection structureen
dc.subjectalpha-helicesen
dc.subjectalanine-based peptidesen
dc.subjectanhydrous peptide structureen
dc.titleBiophysical studies of anhydrous peptide structureen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentChemistryen
thesis.degree.disciplineChemistryen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberJohnson, Arthur E.
dc.contributor.committeeMemberPerez, Lisa M.
dc.contributor.committeeMemberScholtz, J. Martin
dc.type.genreElectronic Dissertationen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record