Show simple item record

dc.contributor.advisorHall, Timothy C
dc.creatorWang, Tao
dc.date.accessioned2010-01-15T00:01:33Z
dc.date.accessioned2010-01-16T01:45:44Z
dc.date.available2010-01-15T00:01:33Z
dc.date.available2010-01-16T01:45:44Z
dc.date.created2007-08
dc.date.issued2009-05-15
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-1427
dc.description.abstractVariability of transgene expression levels resulting from gene silencing is considered as ahindrance to the successful application of plant genetic engineering. Towards alleviatinggene silencing, I decided to screen for novel genes involved in transgene silencing and toinvestigate how these genes regulate plant development. Genes encoding putative chromatinremodeling factors, especially those including a SET domain, were selected as candidatetargets. A bioinformatic analysis of the Arabidopsis SET genes (AtSET) was performed andthese genes were classified into 6 groups based on the domain architecture. RNA interference (RNAi) vectors were constructed for ~ 20 AtSET genes and wereintroduced into both wild type lines and transgenic lines silenced for a GFP reporter gene.Surprisingly, altered developmental phenotypes were only observed for three constructs,raising questions as to the effectiveness of the RNAi approach for the chosen Arabidopsissystem. To assess this situation, I targeted a phytoene desaturase (PDS) gene using the sameRNAi approach. Inactivation of PDS renders plant a readily identifiable phenotype. Whereasthe RNAi penetrance in Arabidopsis can be very high, the expressivity of RNAi in varioustissues and among different plants can vary dramatically. Contradictory to previous reports,I found that there is correlation between transcript level and silencing phenotype. Possiblereasons for this discrepancy are discussed. No apparent correlation between transgene copynumber and RNAi phenotypes was observed. Among the three RNAi constructs that caused an abnormal development inArabidopsis, K-23 which targets SuvR3 has the highest expressivity and could reactivate asilenced GFP locus. SuvR3 RNAi lines were selfed for six generations and were screenedfor morphological phenotypes. Abnormal number of flower organs, loss of viability of malegametophytes, and decreased seedling germination percentage were found in SuvR3 RNAilines. A progressive increase in both severity and frequency of abnormal phenotypes wereseen in subsequent generations, suggesting an epigenetic regulatory mechanism involvedwith SuvR3. Alternative splicing of SuvR3 was also observed in most of Arabidopsis tissues.One of the protein isoforms, SuvR3, lacks 16 amino acids within the highly conserved SETdomain. Possible effects of isoform interaction are proposed.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectRNA interferenceen
dc.subjectRNAi penetranceen
dc.subjectRNAi expressivityen
dc.subjectgene silencingen
dc.subjectSET domainen
dc.subjectalternative splicingen
dc.titleCharacterization of AtSUVR3 functions in Arabidopsis thaliana using RNA interferenceen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentBiologyen
thesis.degree.disciplineBiologyen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberChen, Jeffrey Z
dc.contributor.committeeMemberMcKnight, Thomas D
dc.contributor.committeeMemberPepper, Alan E
dc.type.genreElectronic Dissertationen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record