Show simple item record

dc.contributor.advisorBanerjee, Debjyoti
dc.creatorSathyamurthi, Vijaykumar
dc.date.accessioned2010-01-15T00:00:15Z
dc.date.accessioned2010-01-16T00:34:06Z
dc.date.available2010-01-15T00:00:15Z
dc.date.available2010-01-16T00:34:06Z
dc.date.created2006-12
dc.date.issued2009-05-15
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-1155
dc.description.abstractSubcooled pool boiling on nanotextured surfaces is explored in this study. The experiments are performed in an enclosed viewing chamber. Two silicon wafers are coated with Multiwalled Carbon Nanotubes (MWCNT), 9 microns (Type-A) and 25 microns (Type-B) in height. A third bare silicon wafer is used for control experiments. The test fluid is PF-5060, a fluoroinert with a boiling point of 56°C (Manufacturer: 3M Co.). The apparatus is of the constant heat flux type. Pool boiling experiments in nucleate and film boiling regimes are reported in this study. Experiments are carried out under low subcooling (5 °C and 10 °C) and high subcooling conditions (20°C to ~ 38°C). At approximately 38°C, a non-departing bubble configuration is obtained on a bare silicon wafer. Increase in subcooling is found to enhance the critical heat flux (CHF) and the CHF is found to shift towards higher wall superheats. Presence of MWCNT on the test surface led to an enhancement in heat flux. Potential factors responsible for boiling heat transfer enhancement on heater surfaces coated with MWCNT are identified as follows: a. Enhanced surface area or nano - fin effect b. Higher thermal conductivity of MWCNT than the substrate c. Disruption of vapor-liquid vapor interface in film boiling, and of the “microlayer” region in nucleate boiling d. Enhanced transient heat transfer caused by local quasi-periodic transient liquid-solid contacts due to presence of the “hair like” protrusion of the MWCNT e. Enhancement in the size of cold spots f. Pinning of contact line, leading to enhanced surface area underneath the bubble leading to enhanced heat transfer Presence of MWCNT is found to enhance the phase change heat transfer by approximately 400% in nucleate boiling for conditions of low subcooling. The heat transfer enhancement is found to be independent of the height of MWCNT in nucleate boiling regime in the low subcooling cases. About 75%-120% enhancement in heat transfer is observed for surfaces coated with MWCNT under conditions of high subcooling in the nucleate boiling regime. Surfaces coated with Type-B MWCNT show a 75% enhancement in heat transfer in the film boiling regime under conditions of low subcooling.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectboilingen
dc.subjectcarbon nanotubesen
dc.subjectsubcooleden
dc.subjectCHFen
dc.subjectLeidenfrosten
dc.titlePool boiling studies on nanotextured surfaces under highly subcooled conditionsen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentMechanical Engineeringen
thesis.degree.disciplineMechanical Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberAnand, N.K.
dc.contributor.committeeMemberMannan, Sam M.
dc.type.genreElectronic Thesisen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record