Show simple item record

dc.contributor.advisorSevick-Muraca, Eva M.
dc.creatorRasmussen, John C.
dc.date.accessioned2010-01-15T00:02:18Z
dc.date.accessioned2010-01-16T02:03:02Z
dc.date.available2010-01-15T00:02:18Z
dc.date.available2010-01-16T02:03:02Z
dc.date.created2006-12
dc.date.issued2009-05-15
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-1067
dc.description.abstractHerein we present the development of a fluorescence-enhanced, frequency-domain radiative transport reconstruction system designed for small animal optical tomography. The system includes a time-dependent data acquisition instrument, a radiative transport based forward model for prediction of time-dependent propagation of photons in small, non-diffuse volumes, and an algorithm which utilizes the forward model to reconstruct fluorescent yields from air/tissue boundary measurements. The major components of the instrumentation include a charge coupled device camera, an image intensifier, signal generators, and an optical switch. Time-dependent data were obtained in the frequency-domain using homodyne techniques on phantoms with 0.2% to 3% intralipid solutions. Through collaboration with Transpire, Inc., a fluorescence-enhanced, frequency-domain, radiative transport equation (RTE) solver was developed. This solver incorporates the discrete ordinates, source iteration with diffusion synthetic acceleration, and linear discontinuous finite element differencing schemes, to predict accurately the fluence of excitation and emission photons in diffuse and transport limited systems. Additional techniques such as the first scattered distributed source method and integral transport theory are used to model the numerical apertures of fiber optic sources and detectors. The accuracy of the RTE solver was validated against diffusion and Monte Carlo predictions and experimental data. The comparisons were favorable in both the diffusion and transport limits, with average errors of the RTE predictions, as compared to experimental data, typically being less than 8% in amplitude and 7% in phase. These average errors are similar to those of the Monte Carlo and diffusion predictions. Synthetic data from a virtual mouse were used to demonstrate the feasibility of using the RTE solver for reconstructing fluorescent heterogeneities in small, non-diffuse volumes. The current version of the RTE solver limits the reconstruction to one iteration and the reconstruction of marginally diffuse, frequency-domain experimental data using RTE was not successful. Multiple iterations using a diffusion solver successfully reconstructed the fluorescent heterogeneities, indicating that, when available, multiple iterations of the RTE based solver should also reconstruct the heterogeneities.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectfrequency domain photon migrationen
dc.subjectsmall animal imagingen
dc.subjectradiative transport equationen
dc.subjectoptical tomographyen
dc.titleDevelopment of a radiative transport based, fluorescence-enhanced, frequency-domain small animal imaging systemen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentChemical Engineeringen
thesis.degree.disciplineChemical Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberBevan, Michael
dc.contributor.committeeMemberCote, Gerard
dc.contributor.committeeMemberShantz, Daniel
dc.type.genreElectronic Dissertationen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record