Show simple item record

dc.contributor.advisorFitzpatrick, Paul F.
dc.creatorRalph, Erik C.
dc.date.accessioned2010-01-14T23:56:27Z
dc.date.accessioned2010-01-16T01:45:14Z
dc.date.available2010-01-14T23:56:27Z
dc.date.available2010-01-16T01:45:14Z
dc.date.created2006-12
dc.date.issued2009-05-15
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-1043
dc.description.abstractDespite a number of kinetic and spectroscopic studies, the chemical mechanisms of amine oxidation by flavoenzymes remain widely debated. The mechanisms of by Nmethyltryptophan oxidase (MTOX) and tryptophan 2-monooxygenase (TMO) were probed using a combination of pH and primary deuterium, solvent, and 15N kinetic isotope effects. Slow substrates were chosen for these studies; MTOX was characterized with N-methylglycine and TMO was characterized with L-alanine. Primary deuterium kinetic isotope effects of 7.2 and 5.3 were observed for sarcosine oxidation by MTOX and for alanine oxidation by TMO, respectively, independent of the substrate concentration and pH. Monitoring the reduction of flavin spectroscopically revealed no intermediate flavin species with both enzyme-substrate systems. Furthermore, the magnitudes of the 15N kinetic isotope effects observed with both systems suggest that nitrogen rehybridization and C-H bond cleavage are concerted. These results are consistent with both enzymes utilizing a hydride transfer mechanism for amine oxidation. The role of the iron ligands of tyrosine hydroxylase (TyrH) was also investigated. TyrH contains one iron per monomer, which is held by three conserved amino acid residues, two histidines and a glutamate. As a probe of the plasticity of the metal binding site, each of the metal ligands in TyrH was substituted with glutamine, glutamate, or histidine. The resulting proteins were characterized for metal content, catalytic activity, and dopamine binding. The H336E and H336Q enzymes retain substantial catalytic activity. In contrast, the E376Q enzyme retains about 0.4% of the wild-type catalytic activity, and the E376H enzyme has no significant activity. The H331E enzyme oxidizes tetrahydropterin in a tyrosine-independent manner. The position of the charge-transfer absorbance band for the H336E and H336Q enzyme-inhibitor complexes is shifted relative to that of the wild-type enzyme, consistent with the change in the metal ligand. In contrast, the E376H and E376Q enzymes catalyze dopamine oxidation. These results provide a reference point for further structural studies of TyrH and the other aromatic amino acid hydroxylases, and for similar studies of other enzymes containing this ironbinding motif.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectflavinen
dc.subjectenzymeen
dc.subjectkineticsen
dc.subjectisotope effectsen
dc.subjectoxidasesen
dc.titleThe chemical mechanisms of flavin-dependent amine oxidases and the plasticity of the two-his one-carboxylate facial triad in tyrosine hydroxylaseen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentBiochemistry and Biophysicsen
thesis.degree.disciplineBiochemistryen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberPettigrew, Donald W.
dc.contributor.committeeMemberPolymenis, Michael
dc.contributor.committeeMemberRaushel, Frank M.
dc.type.genreElectronic Dissertationen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record