Show simple item record

dc.contributor.advisorLeipper, Dale F.
dc.creatorHitzfelder, Stephen Jude
dc.date.accessioned2020-01-08T17:44:45Z
dc.date.available2020-01-08T17:44:45Z
dc.date.created1974
dc.date.issued1968
dc.identifier.urihttps://hdl.handle.net/1969.1/DISSERTATIONS-171172
dc.description.abstractThe matrix operator method of solving radiation transfer problems is extended to include polarization. The reflection and transmission operators are presented with continuous variables. An explicit expression for the phase matrix for spherical particles is obtained from the Mie theory in a form applicable to the matrix operator method. The symmetry relations derived by Hovenier from symmetry arguments for the phase matrix are rigorously demonstrated. The symmetry relations for the reflection and transmission operator in both the homogenous and inhomogenous cases are rigorously proven from the symmetry properties of the phase matrix. The reflection and transmission opperators are Fourier decomposed in azimuth and the resulting equations are discretized, yielding the usual discrete equations of the matrix operator method. Intensity, polarization, and direction of polarization results are given for a conservative Rayleigh atmosphere with optical depths ranging from the very small to the semi-infinite limit. The position of the babinet, and Brewser/Arago neutral points are given as a function of optical depth for the reflected and transmitted radiation. The change in the direction of polarization from single scattering is given for the reflected radiation for various depths. The change in the direction of polarization increases with optical depth to depths slightly greater than one. The change then decreases to the semi-infinite limit.en
dc.format.extent133 leavesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.classification1974 Dissertation H677
dc.titleRadiation transfer through the earth's atmosphere using the matrix operator methoden
dc.typeThesisen
thesis.degree.disciplinePhysicsen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberBryant, William R.
dc.contributor.committeeMemberIbert, Edward R.
dc.contributor.committeeMemberWhealy, Roger D.
dc.contributor.committeeMemberZingaro, Ralph A.
dc.type.genredissertationsen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen
dc.publisher.digitalTexas A&M University. Libraries


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access