Show simple item record

dc.creatorLee, Chomsik
dc.date.accessioned2020-08-21T22:10:00Z
dc.date.available2020-08-21T22:10:00Z
dc.date.issued1993
dc.identifier.urihttps://hdl.handle.net/1969.1/DISSERTATIONS-1530757
dc.descriptionVita.en
dc.description.abstractIn this thesis, the electron transport mechanisms and the current-voltage characteristics in one and two-dimensional structures are described. The resonant tunneling characteristics in double-barrier heterostructure electron devices axe investigated. Physical phenomena due to the reduced size of semiconductor devices are theoretically studied. Electron devices with channel dimensions of the ultra-submicron size or less exhibit many novel quantum effects when the wave length becomes comparable to the channel size. The investigations axe carried out for the III-V compound (GaAs/AlGaAs) material system. Particularly, we investigate a gated resonant tunneling diode (GRTD) as a future quantum device [1]. Numerical solutions to the two- dimensional Poisson equation and continuity equation have been used to calculate the lateral depletion region and carrier concentrations by the finite difference method. Depletion effects on current voltage characteristics are found by the simulation of the GRTD using a self-consistent quantum model. The resulting potentials and charge distributions are dominated by the space change region. It is required that the gate must be deposited close to double- barriers to control I-V curve effectively. We compare our results with calculations obtained for the case of weak lateral confinement (3D to 2D tunneling when the GRTD reaches two dimensional in the well region) and for the case of strong lateral confinement (in the bias conditions whereby the GRTD reaches zero-dimensional in the well region). In both cases, the conduction band structure is different depending on the position of x (lateral) direction. This axises from a lateral variation of the voltage drop across the double-barrier, which leads to an edge effect on the current-voltage characteristics. Using the Breit and Wigner formula in the case of weak lateral confinement, the elastic and inelastic scattering mechanism is studied. As scattering time t(i) is decreased, the current-voltage characteristics are dramatically broadened and the peak-to-valley ratio is reduced. This work also includes the investigation of negative transconductance in the GRTD. For strong lateral confinement (lD to OD tunneling), we examine the effects of elastic scattering by defects or impurities in the GRTD double-barrier structure. Theoretical calculations of tunneling characteristics of the gated resonant tunneling diode axe obtained in low dimensionality using a scattering transfer matrix approach. In the bias conditions whereby the GRTD reaches zero-dimension in the well region, we consider the attractive and repulsive perturbation potential (V.,) of impurity or defect scattering in emitter and well regions. The scattering matrices are described by using the presence of evanescent, or non-propagating, modes in different lateral confinement structures. Electron transport in a double- barrier structure is calculated by a self-consistent approach.en
dc.format.extentxiv, 133 leavesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectMajor electrical engineeringen
dc.subject.classification1993 Dissertation L4776
dc.titleTheory of resonant tunneling characteristics in semiconductor heterostructure electron devicesen
dc.typeThesisen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.namePh. Den
dc.type.genredissertationsen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen
dc.publisher.digitalTexas A&M University. Libraries
dc.identifier.oclc34542348


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access