Show simple item record

dc.contributor.advisorGarcia-Diaz, Alberto
dc.creatorLee, Hongchul
dc.date.accessioned2020-09-02T20:15:35Z
dc.date.available2020-09-02T20:15:35Z
dc.date.issued1993
dc.identifier.urihttps://hdl.handle.net/1969.1/DISSERTATIONS-1375020
dc.descriptionVita.en
dc.description.abstractThe primary objective of this study is to develop a network-flow based procedure for grouping the machines of a manufacturing system into cells, and the parts to be processed into families, in such a way that the overall intercellular flow of parts is minimized. In order to develop a meaningful comprehensive cell formation approach, the following three important cases are considered: (1) Unrestricted number of cells and unrestricted cell size, (2) Restricted number of cells and unrestricted cell size, and (3) Restricted number of cells and restricted cell size. After designing the machine cells, parts are integrated into part families based on the machine requirements with the restriction on part family size. The network methodology consists of three phases: (1) preprocessing phase for computing the functional relationship between machines for a network modeling of the problem; (2) partitioning phase for manufacturing cell formation; and (3) part family identification phase. The first phase computes the functional relationship between machines based on two kinds of processing information (machine-part matrix and operation sequence) for a network modeling of the problem. The second phase partitions the network for manufacturing cell formation. The 0-1 integer programming model and 0-1 quadratic programming model are proposed and network-flow based solution procedures are developed. Finally, the last phase identifies the part families. A 0-1 integer programming model is formulated and the solution of this model is performed through a network approach that allows the identification of a feasible assignment of parts to machine cells satisfying the restriction on part family size. A state-of-the art optimization procedure known as the relaxation algorithm was used for enhancing the computational efficiency of the proposed methodology. The concept of using a circulation network for the cell formation problem is a new approach. The most important advantages of the proposed network methodology in the cell and part family formation is its extremely efficient computational performance. Computational results indicate that the proposed approach is appropriate for solving large-scale industrial problems including up to several hundreds of machines and several thousands of parts in a microcomputer environment.en
dc.format.extentx, 140 leavesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectMajor industrial engineeringen
dc.subject.classification1993 Thesis L4783
dc.subject.lcshCluster analysisen
dc.subject.lcshMathematical modelsen
dc.subject.lcshComputer integrated manufacturing systemsen
dc.subject.lcshGroup technologyen
dc.subject.lcshProduction controlen
dc.subject.lcshAutomationen
dc.titleNetwork flow partitioning procedures for the analysis of cellular manufacturing systemsen
dc.typeThesisen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.namePh. Den
dc.contributor.committeeMemberMalave, Cesar, O.
dc.contributor.committeeMemberSanchez-Sinencio, Edgar
dc.contributor.committeeMemberWysk, Richard A.
dc.type.genredissertationsen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen
dc.publisher.digitalTexas A&M University. Libraries
dc.identifier.oclc30147337


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access