Show simple item record

dc.contributor.advisorGutierrez-Osuna, Ricardo
dc.creatorGutierrez Galvez, Agustin
dc.date.accessioned2007-09-17T19:36:24Z
dc.date.available2007-09-17T19:36:24Z
dc.date.created2003-05
dc.date.issued2007-09-17
dc.identifier.urihttps://hdl.handle.net/1969.1/5878
dc.description.abstractArrays of broadly-selective chemical sensors, also known as electronic noses, have been developed during the past two decades as a low-cost and high-throughput alternative to analytical instruments for the measurement of odorant chemicals. Signal processing in these gas-sensor arrays has been traditionally performed by means of statistical and neural pattern recognition techniques. The objective of this dissertation is to develop new computational models to process gas sensor array signals inspired by coding and learning mechanisms of the biological olfactory system. We have used a neurodynamic model of the olfactory system, the KIII, to develop and demonstrate four odor processing computational functions: robust recovery of overlapping patterns, contrast enhancement, background suppression, and novelty detection. First, a coding mechanism based on the synchrony of neural oscillations is used to extract information from the associative memory of the KIII model. This temporal code allows the KIII to recall overlapping patterns in a robust manner. Second, a new learning rule that combines Hebbian and anti-Hebbian terms is proposed. This learning rule is shown to achieve contrast enhancement on gas-sensor array patterns. Third, a new local learning mechanism based on habituation is proposed to perform odor background suppression. Combining the Hebbian/anti-Hebbian rule and the local habituation mechanism, the KIII is able to suppress the response to continuously presented odors, facilitating the detection of the new ones. Finally, a new learning mechanism based on anti-Hebbian learning is proposed to perform novelty detection. This learning mechanism allows the KIII to detect the introduction of new odors even in the presence of strong backgrounds. The four computational models are characterized with synthetic data and validated on gas sensor array patterns obtained from an e-nose prototype developed for this purpose.en
dc.format.extent12818453 bytesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.subjecte-noseen
dc.subjectKIII modelen
dc.subjectcodingen
dc.subjectlearningen
dc.subjectneurodynamicsen
dc.titleCoding and learning of chemosensor array patterns in a neurodynamic model of the olfactory systemen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentComputer Scienceen
thesis.degree.disciplineComputer Scienceen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberChoe, Yoonsuck
dc.contributor.committeeMemberColas, Marco, Santiago
dc.contributor.committeeMemberMcCormick, Bruce
dc.contributor.committeeMemberPilant, Michael S.
dc.type.genreElectronic Dissertationen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record