Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fast amplitude and delay measurement for characterization of optical devices

    Thumbnail
    View/ Open
    etd-tamu-2006B-ELEN-Thompson.pdf (705.0Kb)
    Date
    2006-10-30
    Author
    Thompson, Michael Thomas
    Metadata
    Show full item record
    Abstract
    A fast measurement technique based on the modulation phase-shift technique is developed to measure the wavelength-dependent magnitude and phase responses of optical devices. The measured phase response is in the form of group delay, which is used to determine the chromatic dispersion in the device under test by taking the derivative of the group delay with respect to optical wavelength. The measurement setup allows both step-tunable and sweeping laser sources. A modulation frequency of up to 2.7 GHz is accommodated. An alternate method for the phase measurement that overcomes non-linearities in the measurement setup is also presented. The speed of the measurement setup is limited by the sweeping speed of the laser source, which for the Agilent 81682A is 40 nm/sec. The magnitude accuracy is determined by taking a comparison to the commercially available Micron Finisar measurement system, where an error of 0.125 dB is noted. The phase accuracy of the measurement setup is tested by taking the Hilbert transform of the measured magnitude response of an Acetylene gas cell and comparing it to the integral of the measured group delay. The average deviation between the two methods is 0.1 radians. An Acetylene gas cell, fiber Bragg grating, and chirped Bragg grating are tested with the measurement setup and the Agilent 8168The characterization of the setup leads to the conclusion that the measurement setup developed in this paper is fast and accurate. The speed of the technique is on the order of microseconds for a single measurement and excels beyond the speed of the standard modulation phase-shift technique, which includes measurement times on the order of minutes. The accuracy of the technique is within 0.125 dB for magnitude measurements and 0.1 radians for phase measurements when compared to commercially available measurement systems.2A laser source at 40 nm/sec and the measurement plots are presented.
    URI
    https://hdl.handle.net/1969.1/4440
    Subject
    group delay
    dispersion
    modulation
    phase
    optical
    filters
    measurement
    bragg
    gas cell
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Thompson, Michael Thomas (2006). Fast amplitude and delay measurement for characterization of optical devices. Master's thesis, Texas A&M University. Texas A&M University. Available electronically from https : / /hdl .handle .net /1969 .1 /4440.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartmentType

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV