Show simple item record

dc.contributor.advisorJohnson, Brann
dc.creatorGraff, Mitchell C
dc.date.accessioned2006-10-30T23:32:02Z
dc.date.available2006-10-30T23:32:02Z
dc.date.created2006-08
dc.date.issued2006-10-30
dc.identifier.urihttps://hdl.handle.net/1969.1/4385
dc.description.abstractThis research characterized a system of small faults (displacement < 0.3 m) in seven closely-spaced continuous 2.4 inch (6.1 cm) diameter cores. Cores were obtained from central Texas, on the western edge of the Llano Uplift. Cores penetrate a dip-slip dominant, normal fault (Nobles Fault) with 18.3 m (60 ft) of stratigraphic throw. The spatial, geometric and kinematic attributes of small faults within the Nobles Fault system were characterized to explore potential cause-and-effect relationships. To quantify spatial distributions, a "density" measure based on individual small fault magnitude was utilized. Approximately half of the small faults in the core possessed no discernible offset markers; thus displacement amount for these faults could not be measured directly. Using a nonparametric method in which an alternating conditional expectation determined optimal transformations for the data, a statistically significant empirical correlation was established for faults with measurable gouge thickness, displacement, protolith mean grain size and sorting. Gouge thickness of small faults was found to be dependant upon the displacement amount of the small fault and the textural characteristics of the host protolith. The role of protolith lithology, proximity to crystalline basement, and structural position relative to the Nobles Fault system were examined to explain observed ubiquitous spatial distribution of small faults. Small faults were found to occur in clusters and the number of faults per foot only weakly correlates to the cumulative displacement of the corresponding faults. The amount of mudstone present is the dominant factor controlling small fault formation. Intervals with only minor quantities of mudstone have the largest number of faults per foot as well as largest associated cumulative displacement per foot. Frequency of occurrence of small faults near the basement is greater when compared to similar lithologies higher in the core. Intensity of small faults do not universally increase with proximity to large faults. To observe an increase in small faults, it is necessary to use a mean global cumulative displacement approach. Zones of greater than average cumulative displacement of small faults in close proximity to large faults were observed in zones that are compatible with faultfault interaction.en
dc.format.extent52332003 bytesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.subjectFaultsen
dc.subjectHickoryen
dc.titleA core-based assessment of the spatial relationship of small faults associated with a basement-controlled, large normal fault in the Hickory Sandstoneen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentGeology and Geophysicsen
thesis.degree.disciplineGeologyen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberChester, Frederick
dc.contributor.committeeMemberDatta-Gupta, Akhil
dc.type.genreElectronic Thesisen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record