Show simple item record

dc.contributor.advisorJuvkam-Wold, Hans
dc.creatorViloria Ochoa, Marilyn
dc.date.accessioned2006-10-30T23:29:59Z
dc.date.available2006-10-30T23:29:59Z
dc.date.created2006-08
dc.date.issued2006-10-30
dc.identifier.urihttps://hdl.handle.net/1969.1/4334
dc.description.abstractThis study presents a simplified and accurate procedure for selecting the rheological model which best fits the rheological properties of a given non- Newtonian fluid and introduces five new approaches to correct for tool joint losses from expansion and contraction when hydraulics is calculated. The new approaches are enlargement and contraction (E&C), equivalent diameter (ED), two different (2IDs), enlargement and contraction plus equivalent diameter (E&C+ED), and enlargement and contraction plus two different IDs (E&C+2IDs). In addition to the Newtonian model, seven major non-Newtonian rheological models (Bingham plastic, Power law, API, Herschel-Bulkley, Unified, Robertson and Stiff, and Casson) provide alternatives for selecting the model that most accurately represents the shear-stress/shear-rate relationship for a given non- Newtonian fluid. The project assumes that the model which gives the lowest absolute average percent error (EAAP) between the measured and calculated shear stresses is the best one for a given non-Newtonian fluid. The results are of great importance in achieving correct results for pressure drop and hydraulics calculations and the results are that the API rheological model (RP 13D) provides, in general, the best prediction of rheological behavior for the mud samples considered (EAAP=1.51), followed by the Herschel-Bulkley, Robertson and Stiff, and Unified models. Results also show that corrections with E&C+2IDs and API hydraulics calculation give a good approximation to measured pump pressure with 9% of difference between measured and calculated data.en
dc.format.extent1961721 bytesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.subjectrheologyen
dc.subjectdrillingen
dc.titleAnalysis of drilling fluid rheology and tool joint effect to reduce errors in hydraulics calculationsen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentPetroleum Engineeringen
thesis.degree.disciplinePetroleum Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberShubert, Jerome
dc.contributor.committeeMemberUgaz, Victor
dc.contributor.committeeMemberValko, Peter
dc.type.genreElectronic Dissertationen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record