Show simple item record

dc.contributor.advisorAubeny, Charles
dc.creatorChoi, Hyung Jun
dc.date.accessioned2006-10-30T23:28:25Z
dc.date.available2006-10-30T23:28:25Z
dc.date.created2005-08
dc.date.issued2006-10-30
dc.identifier.urihttps://hdl.handle.net/1969.1/4287
dc.description.abstractOn-going research at Texas A&M University indicated that soil stabilization using calcium chloride filter cake along with Class F fly ash generates high strength. Previous studies were conducted with samples containing calcium chloride filter cake and both Class C fly ash and Class F fly ash. Mix design was fixed at 1.3% and 1.7% calcium chloride and 5% and 10% fly ash with crushed limestone base material. Throughout previous studies, recommended mix design was 1.7% calcium chloride filter cake with 10% Class F fly ash in crushed limestone base because Class F fly ash generates early high and durable strength. This research paper focused on the strength increase initiated by greater than 1.7% pure calcium chloride used with Class F fly ash in soil to verify the effectiveness and optimum ratio of calcium chloride and Class F fly ash in soil stabilization. Mix design was programmed at pure calcium chloride concentrations at 0% to 6% and Class F fly ash at 10 to 15%. Laboratory tests showed samples containing any calcium chloride concentration from 2% to 6% and Class F fly ash content from 10% to 15% obtained high early strength however, optimum moisture content, different mix design, and mineralogy deposit analysis are recommended to evaluate the role and the effectiveness of calcium chloride in soil stabilization because of the strength decreasing tendency of the samples containing calcium chloride after 56 days.en
dc.format.extent1086268 bytesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.subjectSoilen
dc.subjectStabilizationen
dc.subjectCalcium Chlorideen
dc.subjectFly Ashen
dc.titleSoil stabilization using optimum quantity of calcium chloride with Class F fly ashen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentCivil Engineeringen
thesis.degree.disciplineCivil Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberBiscontin, Giovanna
dc.contributor.committeeMemberMathewson, Christopher C.
dc.type.genreElectronic Thesisen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record