Show simple item record

dc.contributor.advisorSan Andres, Luis
dc.creatorRubio Tabares, Dario
dc.date.accessioned2006-08-16T19:06:25Z
dc.date.available2006-08-16T19:06:25Z
dc.date.created2003-05
dc.date.issued2006-08-16
dc.identifier.urihttps://hdl.handle.net/1969.1/3854
dc.description.abstractGas foil bearings (GFB) appear to satisfy most requirements for oil-free turbomachinery, i.e. relatively simple in construction, ensuring low drag friction and reliable high speed operation. However, GFBs have a limited load capacity and minimal amounts of damping. A test rig for the rotordynamic evaluation of gas foil bearings was constructed. A DC router motor, 25 krpm max speed, drives a 1.02 kg hollow rotor supported on two bump-type foil gas bearings (L = D = 38.10 mm). Measurements of the test rotor dynamic response were conducted for increasing mass imbalance conditions. Typical waterfalls of rotor coast down response from 25 krpm to rest evidence the onset and disappearance of severe subsynchronous motions with whirl frequencies at ~ 50% of rotor speed, roughly coinciding with the (rigid mode) natural frequencies of the rotor-bearing system. The amplitudes of motion, synchronous and subsynchronous, increase (non) linearly with respect to the imbalance displacements. The rotor motions are rather large; yet, the foil bearings, by virtue of their inherent flexibility, prevented the catastrophic failure of the test rotor. Tests at the top shaft speed, 25 krpm, did not excite subsynchronous motions. In the experiments, the subsynchronous motion speed range is well confined to shaft speeds ranging from 22 krpm to 12 krpm. The experimental results show the severity of subsynchronous motions is related to the amount of imbalance in the rotor. Surprisingly enough, external air pressurization on one side of the foil bearings acted to reduce the amplitudes of motion while the rotor crossed its critical speeds. An air-film hovering effect may have enhanced the sliding of the bumps thus increasing the bearingsÂ’ damping action. The tests also demonstrate that increasing the gas feed pressure ameliorates the amplitudes of subsynchronous motions due to the axial flow retarding the circumferential flow velocity development. A finite element rotordynamic analysis models the test rotor and uses predicted bearing force coefficients from the static equilibrium GFB load analysis. The rotordynamic analysis predicts critical speeds at ~8 krpm and ~9 krpm, which correlate well with test critical speeds. Predictions of rotordynamic stability are calculated for the test speed range (0 to 25 krpm), showing unstable operation for the rotor/bearing system starting at 12 krpm and higher. Predictions and experimental results show good agreement in terms of critical speed correlation, and moderate displacement amplitude discrepancies for some imbalance conditions. Post-test inspection of the rotor evidenced sustained wear at the locations in contact with the bearings' axial edges. However, the foil bearings are almost in pristine condition; except for top foil coating wear at the bearing edges and along the direction of applied static load.en
dc.format.extent3239585 bytesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.subjectFoil Bearingsen
dc.subjectsubsynchronous vibrationsen
dc.subjectstructural stiffnessen
dc.titleRotordynamic performance of a rotor supported on bump-type foil bearings: experiments and predictionsen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentMechanical Engineeringen
thesis.degree.disciplineMechanical Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberChilds, Dara
dc.contributor.committeeMemberRediniotis, Othon
dc.type.genreElectronic Thesisen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record