Show simple item record

dc.contributor.advisorHassan, Y. A.
dc.creatorYesilyurt, Gokhan
dc.date.accessioned2004-09-30T01:55:31Z
dc.date.available2004-09-30T01:55:31Z
dc.date.created2006-05
dc.date.issued2004-09-30
dc.identifier.urihttps://hdl.handle.net/1969.1/372
dc.description.abstractThe premise of the work presented here is to use a common analytical tool, Computational Fluid dynamics (CFD), along with a difference turbulence models. Eddy viscosity models as well as state-of-the-art Large Eddy Simulation (LES) were used to study the flow past bluff bodies. A suitable CFD code (CFX5.6b) was selected and implemented. Simulation of turbulent transport for the gas through the gaps of the randomly distributed spherical fuel elements (pebbles) was performed. Although there are a number of numerical studies () on flows around spherical bodies, none of them use the necessary turbulence models that are required to simulate flow where strong separation exists. With the development of high performance computers built for applications that require high CPU time and memory; numerical simulation becomes one of the more effective approaches for such investigations and LES type of turbulence models can be used more effectively. Since there are objects that are touching each other in the present study, a special approach was applied at the stage of building computational domain. This is supposed to be a considerable improvement for CFD applications. Zero thickness was achieved between the pebbles in which fission reaction takes place. Since there is a strong pressure gradient as a result of high Reynolds Number on the computational domain, which strongly affects the boundary layer behavior, heat transfer in both laminar and turbulent flows varies noticeably. Therefore, noncircular curved flows as in the pebble-bed situatio n, in detailed local sense, is interesting to be investigated. Since a compromise is needed between accuracy of results and time/cost of effort in acquiring the results numerically, selection of turbulence model should be done carefully. Resolving all the scales of a turbulent flow is too costly, while employing highly empirical turbulence models to complex problems could give inaccurate simulation results. The Large Eddy Simulation (LES) method would achieve the requirements to obtain a reasonable result. In LES, the large scales in the flow are solved and the small scales are modeled. Eddy viscosity and Reynolds stress models were also be used to investigate the applicability of these models for this kind of flow past bluff bodies at high Re numbers.en
dc.format.extent2041933 bytesen
dc.format.extent120286 bytesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherTexas A&M University
dc.subjectCfden
dc.subjectComputational Fluid Dynamicsen
dc.subjectLesen
dc.subjectLarge Eddy Simulationen
dc.subjectPbmren
dc.subjectPebble Bed Modular Reactorsen
dc.subjectReynolds Stress Modelen
dc.subjectCfxen
dc.titleNumerical simulation of flow distribution for pebble bed high temperature gas cooled reactorsen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentNuclear Engineeringen
thesis.degree.disciplineNuclear Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberPhares, D.
dc.contributor.committeeMemberMarlow, W. H.
dc.type.genreElectronic Thesisen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record