Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of a 2-D black-oil reservoir simulator using a unique grid-block system

    Thumbnail
    View/Open
    etd-tamu-2004C-PETE-Chong.pdf (3.731Mb)
    Date
    2006-04-12
    Author
    Chong, Emeline E
    Metadata
    Show full item record
    Abstract
    The grid orientation effect is a long-standing problem plaguing reservoir simulators that employ finite difference schemes. A rotation of the computational grids yields a substantially different solution under certain circumstances. For example, in a five-spot pattern, the predicted recovery, water cut performance and the locations of the fronts depend on the type of grid system used. A Cartesian grid with one axis parallel to the line joining an injector and producer gives a solution significantly different from a grid that has the axes oriented at 45° to this line. This study develops a unique grid-block assignment where rectangular grid blocks are interspersed with octagonal grid blocks. This grid block system is called the Hybrid Grid Block (HGB) system. The objective of this study is to evaluate the grid orientation effect of the HGB grid to see whether it is an improvement over the conventional Cartesian grid system. In HGB, flow can progress in four directions in the octagonal grid blocks and two in the square grid blocks. The increase in the number of flow directions in the octagonal grid blocks is expected to reduce the grid orientation effect in the model. Hence, this study also evaluates the grid orientation effect of the HGB and compares it with the Cartesian grid system. To test the viability of HGB, a general purpose finite difference IMPES-formulated two-dimensional black oil simulator was developed in this study, while retaining the familiar finite-difference discretization of the flow equations. Several simulation cases were conducted to compare HGB and conventional grid block systems. Comparisons with commercial simulator are also made. Despite the fact that the reservoir is isotropic and homogeneous, grid orientation effect was still observed when rectangular Cartesian grid models are run at mobility ratio, M = 1.0. Grid refinement can help to reduce the grid orientation effect in rectangular Cartesian grid models when there are favorable mobility ratios, i.e. M = 1.0 or less. However, at an unfavorable mobility ratio of M = 10.0, it is found that neither parallel nor diagonal orientation can be used reliably for the displacement problems run in this study. This is because as the number of grid blocks is increased, the performance of diagonal and parallel models actually diverges for the grid spacings investigated here. On the other hand, HGB grid is able to reduce the grid orientation effect even for unfavorable mobility ratio displacement problems (up to M = 50.0), with maximum relative difference in pore volume recovered of 6% between parallel and diagonal HGB grid models for all the cases run in this study. Comparisons between the conventional Cartesian and HGB grid show that the HGB grid is more effective in reducing the grid orientation effect than the Cartesian grid. The HGB grid performs better by consistently giving a smaller relative difference between HGB parallel grid and HGB diagonal grid in pore volume recovered (6.0, 4.5, 3.3, and 2.2%) compared to the relative difference between Cartesian parallel grid and Cartesian diagonal grid in pore volume recovered (17.0, 13.0, 9.3, 7.9%) at similar averaged area per grid block for all the four comparison cases studied.
    URI
    http://hdl.handle.net/1969.1/3334
    Subject
    grid orientation effect
    mobility ratio
    parallel grid orientation
    diagonal grid orientation
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Chong, Emeline E (2004). Development of a 2-D black-oil reservoir simulator using a unique grid-block system. Master's thesis, Texas A&M University. Texas A&M University. Available electronically from http : / /hdl .handle .net /1969 .1 /3334.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV