Show simple item record

dc.contributor.advisorMcVay, Duane A.
dc.creatorOgele, Chile
dc.date.accessioned2005-11-01T15:47:37Z
dc.date.available2005-11-01T15:47:37Z
dc.date.created2005-08
dc.date.issued2005-11-01
dc.identifier.urihttps://hdl.handle.net/1969.1/2621
dc.description.abstractEstimating original hydrocarbons in place (OHIP) in a reservoir is fundamentally important to estimating reserves and potential profitability. Quantifying the uncertainties in OHIP estimates can improve reservoir development and investment decision-making for individual reservoirs and can lead to improved portfolio performance. Two traditional methods for estimating OHIP are volumetric and material balance methods. Probabilistic estimates of OHIP are commonly generated prior to significant production from a reservoir by combining volumetric analysis with Monte Carlo methods. Material balance is routinely used to analyze reservoir performance and estimate OHIP. Although material balance has uncertainties due to errors in pressure and other parameters, probabilistic estimates are seldom done. In this thesis I use a Bayesian formulation to integrate volumetric and material balance analyses and to quantify uncertainty in the combined OHIP estimates. Specifically, I apply Bayes?? rule to the Havlena and Odeh material balance equation to estimate original oil in place, N, and relative gas-cap size, m, for a gas-cap drive oil reservoir. The paper considers uncertainty and correlation in the volumetric estimates of N and m (reflected in the prior probability distribution), as well as uncertainty in the pressure data (reflected in the likelihood distribution). Approximation of the covariance of the posterior distribution allows quantification of uncertainty in the estimates of N and m resulting from the combined volumetric and material balance analyses. Several example applications to illustrate the value of this integrated approach are presented. Material balance data reduce the uncertainty in the volumetric estimate, and the volumetric data reduce the considerable non-uniqueness of the material balance solution, resulting in more accurate OHIP estimates than from the separate analyses. One of the advantages over reservoir simulation is that, with the smaller number of parameters in this approach, we can easily sample the entire posterior distribution, resulting in more complete quantification of uncertainty. The approach can also detect underestimation of uncertainty in either volumetric data or material balance data, indicated by insufficient overlap of the prior and likelihood distributions. When this occurs, the volumetric and material balance analyses should be revisited and the uncertainties of each reevaluated.en
dc.format.extent3088632 bytesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.subjectIntegrationen
dc.subjectQuantificationen
dc.subjectUncertaintyen
dc.subjectVolumetricen
dc.subjectMaterialen
dc.subjectBalanceen
dc.subjectBayesianen
dc.titleIntegration and quantification of uncertainty of volumetric and material balance analyses using a Bayesian frameworken
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentPetroleum Engineeringen
thesis.degree.disciplinePetroleum Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberAhr, Wayne M.
dc.contributor.committeeMemberLee, John W.
dc.type.genreElectronic Thesisen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record