Show simple item record

dc.contributor.advisorMcDermott, Make
dc.creatorMueller, Russell Lee
dc.date.accessioned2005-11-01T15:47:03Z
dc.date.available2005-11-01T15:47:03Z
dc.date.created2005-08
dc.date.issued2005-11-01
dc.identifier.urihttps://hdl.handle.net/1969.1/2600
dc.description.abstractThe Texas A&M University Formula SAE program currently has no rigorous method for analyzing or predicting the overall dynamic behavior of the student-designed racecars. The objective of this study is to fulfill this need by creating a full vehicle ADAMS/Car model incorporating an empirical tire-road force model and validating the longitudinal performance of the model by using vehicle responses recorded at the track. Creating the model requires measuring mass and inertia properties for each part, measuring the locations of all the kinematic joints, testing the Risse Racing Jupiter-5 shocks to characterize damping and stiffness, measuring engine torque, and modeling the tire behavior. Measuring the vehicle performance requires installation of the Pi Research DataBuddy data acquisition system and appropriate sensors. The 2002 Texas A&M University Formula SAE racecar, the subject vehicle, was selected because it already included some accommodations for sensors and is almost identical in layout to the available ADAMS/Car model Formula SAE templates. The tire-road interface is described by the Pacejka ??94 handling force model within ADAMS/Car that is based on a set of Goodyear coefficients. The majority of the error in the model originated from the Goodyear tire model and the 2004 engine torque map. The testing used Hoosier tires and the 2002 engine intake and exhaust configuration. The deliverable is a full vehicle model of the 2002 racecar with a 2004 engine torque map and a tire model correlated to longitudinal performance recorded at the track using the installed data acquisition system. The results of the correlation process, confirmed by driver impressions and performance of the 2004 racecar, show that the 2004 engine torque map predicts higher performance than the measured response with the 2002 engine. The Hoosier tire on the Texas A&M University Riverside Campus track surface produces 75??3% of peak longitudinal tire performance predicted by the Goodyear tire model combined with a road surface friction coefficient of 1.0. The ADAMS/Car model can now support the design process as an analysis tool for full vehicle dynamics and with continued refinement, will be able to accurately predict behavior throughout a complete autocross course.en
dc.format.extent2773569 bytesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.subjectvehicleen
dc.subjectdynamicsen
dc.subjectFormulaen
dc.subjectSAEen
dc.subjectracecaren
dc.subjectADAMSen
dc.titleFull vehicle dynamics model of a formula SAE racecar using ADAMS/Caren
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentMechanical Engineeringen
thesis.degree.disciplineMechanical Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberSrinivasa, Arun R.
dc.contributor.committeeMemberWilliams, Glen N.
dc.type.genreElectronic Thesisen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record