Show simple item record

dc.contributor.advisorHerbert, Bruce E.
dc.creatorMarkley, Christopher Thomas
dc.date.accessioned2005-08-29T14:36:26Z
dc.date.available2005-08-29T14:36:26Z
dc.date.created2003-05
dc.date.issued2005-08-29
dc.identifier.urihttps://hdl.handle.net/1969.1/2235
dc.description.abstractThe toxicity and adverse health effects of arsenic are widely known. It is generally accepted that sorption/desorption reactions with oxy-hydroxide minerals (iron, manganese) control the fate and transport of inorganic arsenic in surface waters through adsorption and precipitation-dissolution processes. In terrestrial environments with limited reactive iron, recent data suggest organoarsenicals are potentially important components of the biogeochemical cycling of arsenic in near-surface environments. Elevated arsenic levels are common in South Texas from geogenic processes (weathering of As-containing rock units) and anthropogenic sources (a byproduct from decades of uranium mining). Sediments collected from South Texas show low reactive iron concentrations, undetectable in many areas, making oxy-hydroxide controls on arsenic unlikely. Studies have shown that eukaryotic algae isolated from arsenic-contaminated waters have increased tolerance to arsenate toxicity and the ability to uptake and biotransform arsenate. In this experiment, net uptake of arsenic over time by a freshwater cyanobacterium never previously exposed to arsenate was quantified as a function of increasing As concentrations and increasing N:P ratios. Toxic effects were not evident when comparing cyanobacterial growth, though extractions indicate accumulation of intracellular arsenic by the cyanobacterium. Increasing N:P ratios has minimal effect on net arsenate uptake over an 18 day period. However, cyanobacteria were shown to reduce arsenate at rates faster than the system can re-oxidize the arsenic suggesting gross arsenate uptake may be much higher. Widespread arsenate reduction by cyanobacterial blooms would increase arsenic mobility and potential toxicity and may be useful as a biomarker of arsenic exposure in oxic surface water environments.en
dc.format.extent2365668 bytesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.subjectArsenicen
dc.subjectBiotransformationen
dc.subjectSequestrationen
dc.subjectCyanobacteriaen
dc.titleArsenate uptake, sequestration and reduction by a freshwater cyanobacterium: a potenial biologic control of arsenic in South Texasen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentGeology and Geophysicsen
thesis.degree.disciplineGeologyen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberGolden, James W.
dc.contributor.committeeMemberMcGuire, Jennifer T.
dc.type.genreElectronic Thesisen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record