Show simple item record

dc.contributor.advisorCrooks, Richard M.
dc.creatorPerez, Gregory Paul
dc.date.accessioned2005-08-29T14:35:32Z
dc.date.available2005-08-29T14:35:32Z
dc.date.created2003-05
dc.date.issued2005-08-29
dc.identifier.urihttps://hdl.handle.net/1969.1/2202
dc.description.abstractWe have investigated the chemical sensitivity of nanoporous (NP) alumina-coated surface acoustic wave (SAW) devices that have been surface-modified with polymeric mediating films. The research in this dissertation covers the refinement of the NP alumina coating, development of dendrimer and/or polymer surface modifications, design of composite ultrathin vapor-phase analyte gates, and preparation of selectively permeable, polymeric films that mediate analyte transport. Nanoporous alumina SAW devices were fabricated from planar Al SAW devices using an anodization process that yields a high-surface-area transduction platform. Refinement of the anodization process results in a homogeneously porous substrate capable of ~40 times the analyte sensitivity of conventional planar SAW devices. Attempts to directly impart selective gas-phase analyte permeation with monolayers of amine-terminated, poly(amidoamine) (PAMAM) dendrimer films were investigated with and without secondary functionalization. We also prepared and characterized pore-bridging polymeric composite ultrathin films (~12 nm) of PAMAM dendrimers and poly(maleic anhydride)-c-poly(methyl vinylether) (Gantrez). Access to the underlying pores of the NP alumina coating can be modulated through the sequential deposition of the composite film. These tailorable ultrathin films result in impermeable surface- modifications which fully gate the analyte response without filling the porous structure. Thin spin-cast films (40 nm) of polydimethylsiloxane (PDMS) were developed to simultaneously provide selective sorption and permeation characteristics towards vapor-phase analytes. The porous nature of the underlying alumina coating provides for this real-time evaluation of sorption and permeation. The results suggest that the thin films offer preferential sorption of non-polar organics and selective permeability towards water vapor.en
dc.format.extent6016999 bytesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.subjectgas sensingen
dc.subjectaluminaen
dc.subjectnanoporousen
dc.subjectvapor sensingen
dc.subjectvolatile organic compoundsen
dc.subjectpermselectiveen
dc.titleChemically sensitive polymer-mediated nanoporous alumina SAW sensors for the detection of vapor-phase analytesen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentChemistryen
thesis.degree.disciplineChemistryen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberRussell, David H.
dc.contributor.committeeMemberMcInnes, Kevin
dc.contributor.committeeMemberSoriaga, Manuel P.
dc.type.genreElectronic Dissertationen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record