Show simple item record

dc.contributor.advisorCruz-Reyes, Jorge
dc.creatorKostomiris, Demetrios Harry
dc.date.accessioned2022-01-27T22:18:49Z
dc.date.available2023-08-01T06:41:51Z
dc.date.created2021-08
dc.date.issued2021-07-23
dc.date.submittedAugust 2021
dc.identifier.urihttps://hdl.handle.net/1969.1/195400
dc.description.abstractThe single-celled pathogens Mycobacterium tuberculosis and Trypanosoma cruzi are the causative agents of the human diseases tuberculosis and Chagas disease, respectively. In an effort to develop potentially new treatments for both of these diseases we have utilized an understanding of enzyme mechanisms to guide the identification and development of potential inhibitors for critical enzymes of these two pathogens. In chapter II the work towards developing/discovering inhibitors of the D-alanine:D-alanine ligase enzyme from M. tuberculosis (MtDdl) is detailed. MtDdl is a target for the antibiotic D-cycloserine (DCS), the use of which is limited, in part, due to side-effects associated with the drug. The goal of this study was to determine if alternative D-alanine-like molecules could inhibit the function of this enzyme in vitro. The inhibitory effect of a small library of D-alanine analogs was evaluated. MtDdl was found to have a high degree of ligand selectivity; however two compounds that mimic the catalytic intermediates were characterized by kinetic and biochemical methods. The results of this study showed that both of these compounds exhibit similar inhibitory potency to DCS. Additionally, evidence for DCS phosphorylation was provided by positional isotope exchange, supporting a mechanism of inhibition which contradicts previous studies. In chapter III the study of a hypoxanthine-guanine phosphoribosyltransferase (HGPRT) enzyme from T. cruzi is discussed. Due to the role of HGPRTs in purine salvage, these enzymes are promising targets for the development of new treatments for Chagas disease. In this study we have found that T. cruzi CL Brener strain possesses a pair of functionally identical genes encoding enzymes with HGPRT activity in vitro. One of these enzymes was further characterized and was found to be rate-limited by product release, which prevented accurate measurement of kinetic isotope effects. Potential transition-state analogs were tested against the enzyme and the most potent of which were found to bind with low nanomolar affinity. Analysis of the structure-activity relationship of the putative transition-state analog inhibitors provided convincing evidence for a chemical mechanism involving an SN1-like transition-state.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.subjectmechanistic enzymology transition state peptidoglycan glycotransferase phosphoribosyltransferase mechanism inhibitor inactivator atp graspen
dc.titleApplication of Mechanistic Enzymology in Identifying Inhibitors of Critical Enzymes from Human Pathogensen
dc.typeThesisen
thesis.degree.departmentBiochemistry and Biophysicsen
thesis.degree.disciplineBiochemistryen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberMeek, Thomas D
dc.contributor.committeeMemberBegley, Tadhg P
dc.contributor.committeeMemberRaushel, Frank M
dc.type.materialtexten
dc.date.updated2022-01-27T22:18:50Z
local.embargo.terms2023-08-01
local.etdauthor.orcid0000-0003-0535-1603


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record