Show simple item record

dc.contributor.advisorCheng, Zhengdong
dc.creatorNava-Medina, Ilse Belen
dc.date.accessioned2021-02-19T20:46:30Z
dc.date.available2022-08-01T06:51:44Z
dc.date.created2020-08
dc.date.issued2020-06-25
dc.date.submittedAugust 2020
dc.identifier.urihttps://hdl.handle.net/1969.1/192485
dc.description.abstractReducing stress is an important goal in poultry production. The Saccharomyces cerevisiae-derived yeast fermentation product Original XPC (XPC, Diamond V Mills, Cedar Rapids, IA, United States) has been shown to reduce the severity of enteric infection and reduce measures of stress in poultry exposed to acute or chronic stress. However, the effect of dietary supplementation of yeast fermentate on other physiological parameters and its mode of action in reducing stress remains unclear. This work aimed to investigate the effects of supplementing XPC or its liquid equivalent, AviCare (Diamond V Mills), on measures of stress susceptibility, health and well-being in poultry exposed to acute and chronic stressors. Three consecutive experiments were conducted to evaluate the effects of yeast fermentate supplementation on measures of stress, growth and feed efficiency in Cobb 500 male broilers exposed to acute and rearing stressors. Both XPC and AviCare consistently and equally reduced measures of short- and long-term stress across all 3 experiments, although trends in body weight gain and feed efficiency were inconsistent. A fourth experiment investigated the effects of XPC and AviCare on measures of stress, plasma biochemistry, cecal microbiome and expression of stress- and immune-related genes in Cobb 500 male broilers. Both XPC and AviCare reduced stress by reducing expression of the ACTH receptor, and modulated immune activity by reducing IL10 and CYP1A2 gene expression as well as plasma IL- The Belousov-Zhabotinsky (BZ) reaction is one of the most studied nonlinear dynamic chemical systems due to its autonomous periodic oscillations. It represents a suitable model for various oscillatory phenomena in Nature such as neuron synapsis, cardiac muscle beating and/or tachycardia, cellular formation cycle in molds, and other types of live-organism morphogenesis. The complexity of the BZ reaction chemical mechanism led to the creation of the Fields-Koros-Noyes model (FKN) that allows for studies via theoretical and mathematical models. Thus, experimental studies of this reaction are necessary to create 3D and life-like models. To bring these models into a more naturalistic setting, we researched the BZ reaction through hydrogels containing iron because of its natural occurrence and relevance. Chemically, the BZ reaction requires a catalyst based on iron (Fe), ruthenium (Ru) or cerium (Ce), and most of the current reports employ Ru. Alternatively, we employed Fe complexes as the catalyst due to their lower toxicity compared to Ru. The Fe-based catalyst was incorporated into polymer matrices (PNIPAM-co-PAAm, gelatin + kappa-carrageenan, and gelatin) to obtain hydrogels that exhibited pattern-rich, self-oscillatory response. Hence, the hydrogels served as models to investigate the effect of liquid crystalline structures on oscillations, the effect of geometry on the wave pattern of 3D-printed hydrogels, and the autonomous motion of hydrogels. Overall, these results open the door for future research on BZ reaction systems with low-toxicity. Furthermore, they contribute to the creation of new 3D locomotive hydrogels and to the development of realistic 3D models that could mimic Nature more efficiently.. However, cecal microbiome and antioxidative capacity were not affected after 42 d. Finally, 2 consecutive experiments were conducted to evaluate the effect of XPC and AviCare on measures of intestinal health in Cobb 500 male broilers and mixed-sex Pekin ducks exposed to cyclic heat stress during the last 14 d of growth. In both experiments yeast fermentate attenuated the negative effects of heat stress on villus length and villus/crypt ratio but not goblet cell density. Yeast fermentate also affected metabolism but did not improve electrolyte balance. In conclusion, adding yeast fermentate to the feed or drinking water reduced stress susceptibility by reducing glucocorticoid production, supported intestinal cell survival during cyclic heat stress, and modulated inflammatory processes in poultry exposed to rearing stress but not cyclic heat stress.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.subjectBelousov-Zhabotinskyen
dc.subjectbiomimetic actuatorsen
dc.subjectautonomous locomotionen
dc.subjectself-oscillating polymersen
dc.subjectbiological oscillatorsen
dc.titleIron-Catalyzed Belousov-Zhabotinsky Hydrogels and Liquid Crystalsen
dc.typeThesisen
thesis.degree.departmentMaterials Science and Engineeringen
thesis.degree.disciplineMaterials Science and Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.type.materialtexten
dc.date.updated2021-02-19T20:46:31Z
local.embargo.terms2022-08-01
local.etdauthor.orcid0000-0001-6457-5725


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record