Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Optimized Plant For A District Heating And Cooling System Using Low-Grade Geothermal Fluids

    Thumbnail
    View/ Open
    LIAO-DISSERTATION-2019.pdf (4.584Mb)
    Date
    2019-08-18
    Author
    Liao, Jiajun
    Metadata
    Show full item record
    Abstract
    An optimized plant is developed for a district heating and cooling system using low-grade geothermal fluids from depleted hydrocarbon wells. The optimum geothermal fluid flowrate and temperature supplied to the surface end-use system are determined as 29 gpm and 191°F from inactive wells on the Texas A&M RELLIS Campus. The absorption chiller, the desiccant dehumidification, and geothermal district heating systems are modeled for cooling, dehumidification, and heating and simplified with relationships between the required geothermal fluid temperature and its output at different outside air conditions. The desiccant wheel dedicated outside air system with heat exchanger and condenser water cooling shows the ability to avoid the most cooling coil load and therefore is selected for the surface integrated system. The surface end-use system modeling is developed by combining these three heat-operated system models with load profiles of typical campus buildings. The inlet temperature requirements and the maximum temperature drops of each system are studied, and possible system arrangements are investigated using the bin method. Both the site energy load to energy ratio (LER) and the cost LER are introduced and calculated. When the building loads are large and the integrated system operates at its full capacity, the optimized arrangement is with the desiccant dehumidification system and the geothermal district heating system operated in parallel. When the outside air temperature is lower than 75°F, the geothermal district heating system is operated; otherwise, the desiccant dehumidification system is operated. Its yearly total energy output is 8,572 MMBtu with a total LER of 14.08 – 23.76, i.e. it requires 14-24 times fewer electric Btu than the energy output. When the integrated system matches the building loads well, the optimized arrangement is that the absorption chiller system and the geothermal district heating system are in parallel, and then in series with the desiccant dehumidification system. Its yearly total energy output is 3,264 MMBtu with a cooling LER of 4.72 – 7.89 and a heating LER of 4.25 – 7.24. Thus, all the integrated geothermal systems described above would have an operating energy use less than one-fourth that of a traditional heating and cooling plant meeting the same loads.
    URI
    https://hdl.handle.net/1969.1/189098
    Subject
    Low-Grade Geothermal Fluids
    Geothermal Central Plant
    District Heating and cooling System
    Desiccant Wheel Dehumidification
    Absorption Chiller
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Liao, Jiajun (2019). An Optimized Plant For A District Heating And Cooling System Using Low-Grade Geothermal Fluids. Doctoral dissertation, Texas A&M University. Available electronically from https : / /hdl .handle .net /1969 .1 /189098.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartmentType

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV