Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    The full text of this item is not available at this time because the student has placed this item under an embargo for a period of time. The Libraries are not authorized to provide a copy of this work during the embargo period, even for Texas A&M users with NetID.

    Fine-Grained Power Gated Multiplier with Online Calibration for Medical IoT Devices

    Thumbnail
    View/Open
    CHANGLARAYAPPA-THESIS-2019.pdf (2.392Mb)
    Date
    2019-04-02
    Author
    Changlarayappa, Swathi
    Metadata
    Show full item record
    Abstract
    With intensive research in the fields of machine learning and neural networks to improve its accuracy comes the responsibility to realize feasible hardware solutions on battery powered IoT devices. This work presents a study of analysis of power hungry computations and a fine-grained power gated multiplier design using approximation, that aims at energy optimization exploiting error resilience of these applications. We use truncation to reduce cycles and low power techniques to reduce power, thus achieving a 2-fold energy reduction. We use wearable IoT devices for medical purposes as our case study and show the generality of our work across applications. Our work performs similar to, or better than the latest work in the field and is a more generic implementation. We propose an online calibration mechanism to determine the approximation rate dynamically that maximizes energy optimization with very low accuracy loss. Our method uses a clustering solution to pre-determine the output label in a majority of cases, without having to need an inference model, thus further reducing energy. We achieve 78% energy improvement compared to a baseline implementation with just 0.46% accuracy loss across benchmarks.
    URI
    http://hdl.handle.net/1969.1/187951
    Subject
    Energy optimization
    IoT
    SVM
    clusters
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Changlarayappa, Swathi (2019). Fine-Grained Power Gated Multiplier with Online Calibration for Medical IoT Devices. Master's thesis, Texas A&M University. Available electronically from http : / /hdl .handle .net /1969 .1 /187951.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV