Show simple item record

dc.contributor.advisorSanchez-Sinencio, Edgar
dc.creatorLavalle Aviles, Fernando Naim
dc.date.accessioned2020-04-23T19:11:39Z
dc.date.available2021-05-01T12:34:19Z
dc.date.created2019-05
dc.date.issued2019-04-04
dc.date.submittedMay 2019
dc.identifier.urihttps://hdl.handle.net/1969.1/187944
dc.description.abstractThis dissertation focuses on two projects. The first one is a power supply rejection (PSR) enhanced with fast settling time (TS) bulk-driven feedforward (BDFF) capacitor-less (CL) low-dropout (LDO) regulator. The second project is a high bandwidth (BW) power adjustable low-voltage (LV) active-RC 4th -order Butterworth low pass filter (LPF). As technology improves, faster and more accurate LDOs with high PSR are going to be required for future on-chip applications and systems.The proposed BDFF CL-LDO will accomplish an improved PSR without degrading TS. This would be achieved by injecting supply noise through the pass device’s bulk terminal in order to cancel the supply noise at the output. The supply injection will be achieved by creating a feedforward path, which compared to feedback paths, that doesn’t degrade stability and therefore allows for faster dynamic performance. A high gain control loop would be used to maintain a high accuracy and dc performance, such as line/load regulation. The proposed CL-LDO will target a PSR better than – 90 dB at low frequencies and – 60 dB at 1 MHz for 50 mA of load current (IvL). The CL-LDO will target a loop gain higher than 90 dB, leading to an improved line and load regulation, and unity-gain frequency (UGF) higher than 20 MHz, which will allow a TS faster than 500 ns. The CL-LDO is going to be fabricated in a CMOS 130 nm technology; consume a quiescent current (IQ) of less than 50 μA; for a dropout voltage of 200 mV and an IvL of 50 mA. As technology scales down, speed and performance requirements increase for on-chip communication systems that reflect the current demand for high speed data-oriented applications. However, in small technologies, it becomes harder to achieve high gain and high speed at the same time because the supply voltage (VvDvD) decreases leaving no room for conventional high gain CMOS structures. The proposed active-RC LPF will accomplish a LV high BW operation that would allow such disadvantages to be overcome. The LPF will be implemented using an active RC structure that allows for the high linearity such communication systems demand. In addition, built-in BW and power configurability would address the demands for increased flexibility usually required in such systems. The proposed LV LPF will target a configurable cut-off frequency (ƒо) of 20/40/80/160 MHz with tuning capabilities and power adjustability for each ƒо. The filter will be fabricated in a CMOS 130 nm technology. The filter characteristics are as following: 4th -order, active-RC, LPF, Butterworth response, VDD = 0.6 V, THD higher than 40 dB and a third-order input intercept point (IIP3) higher than 10 dBm.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.subjectVoltage regulatoren
dc.subjectanalog filtersen
dc.subjectlow voltage amplifieren
dc.subjectlow dropout regulatoren
dc.titlePower-Efficient and High-Performance Cicruit Techniques for On-Chip Voltage Regulation and Low-Voltage Filteringen
dc.typeThesisen
thesis.degree.departmentElectrical and Computer Engineeringen
thesis.degree.disciplineElectrical Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberLi, Peng
dc.contributor.committeeMemberPalermo, Samuel
dc.contributor.committeeMemberMoreno Centeno, Erick
dc.type.materialtexten
dc.date.updated2020-04-23T19:11:40Z
local.embargo.terms2021-05-01
local.etdauthor.orcid0000-0002-9853-1875


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record