Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    The full text of this item is not available at this time because the student has placed this item under an embargo for a period of time. The Libraries are not authorized to provide a copy of this work during the embargo period, even for Texas A&M users with NetID.

    Topics On Bayesian Gaussian Graphical Models

    Thumbnail
    View/Open
    NIU-DISSERTATION-2019.pdf (1.118Mb)
    Date
    2019-07-01
    Author
    Niu, Yabo
    Metadata
    Show full item record
    Abstract
    Gaussian graphical models (GGMs) are a popular tool to learn the dependence structure in the form of a graph among variables of interest. Bayesian methods have gained in popularity in the last two decades due to their ability to simultaneously learn the covariance and the graph and characterize uncertainty in the selection. In this study, I first develop a Bayesian method to incorporate covariate information in the GGMs setup in a nonlinear seemingly unrelated regression framework. I propose a joint predictor and graph selection model and develop an efficient collapsed Gibbs sampler algorithm to search the joint model space. Furthermore, I investigate its theoretical variable selection properties. I demonstrate the proposed method on a variety of simulated data, concluding with a real data set from The Cancer Proteome Atlas (TCPA) project. For scalability of the Markov chain Monte Carlo algorithms, decomposability is commonly imposed on the graph space. A wide variety of graphical conjugate priors are proposed jointly on the covariance matrix and the graph with improved algorithms to search along the space of decomposable graphs, rendering the methods extremely popular in the context of multivariate dependence modeling. An open problem in Bayesian decomposable structure learning is whether the posterior distribution is able to select a meaningful decomposable graph that it is “close” in an appropriate sense to the true non-decomposable graph, when the dimension of the variables increases with the sample size. In the second part of this study, I explore specific conditions on the true precision matrix and the graph which results in an affirmative answer to this question using a commonly used hyper-inverse Wishart prior on the covariance matrix and a suitable complexity prior on the graph space, both in the well-specified and misspecified settings. In absence of structural sparsity assumptions, the strong selection consistency holds in a high dimensional setting where p = O(n α ) for α < 1/3. I show when the true graph is non-decomposable, the posterior distribution on the graph concentrates on a set of graphs that are minimal triangulations of the true graph.
    URI
    http://hdl.handle.net/1969.1/186527
    Subject
    Gaussian Graphical Models
    Selection Consistency
    Hyper-inverse Wishart
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Niu, Yabo (2019). Topics On Bayesian Gaussian Graphical Models. Doctoral dissertation, Texas A&M University. Available electronically from http : / /hdl .handle .net /1969 .1 /186527.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV