Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    The full text of this item is not available at this time because the student has placed this item under an embargo for a period of time. The Libraries are not authorized to provide a copy of this work during the embargo period, even for Texas A&M users with NetID.

    A Laboratory Method for Estimation of Storage Capacity of Rock Samples Under Effective Stress

    Thumbnail
    View/Open
    ALDANAGALLEGO-THESIS-2019.pdf (2.007Mb)
    Date
    2019-06-12
    Author
    Aldana Gallego, Ivan Camilo
    Metadata
    Show full item record
    Abstract
    Fluid storage capacity measurement of core-plugs in the laboratory considers pore-volume as a function of effective stress. The latter is equal to (Applied Confining Pressure) – (Effective Stress Coefficient) x (Applied Pore Pressure). However, results are often reported as a function of difference in the applied pressures, because the effective stress coefficient is unknown and depends on the mechanical properties of the sample. This creates confusion during the interpretation of laboratory data and leads to added uncertainties in the analysis of storage. In this study I present a new laboratory method that allows simultaneous prediction of the sample pore volume, coefficient of isothermal pore compressibility, and the effective stress coefficient. These quantities are necessary to predict the fluid storage as a function of effective stress. The method requires two stages of gas (helium) uptake by the sample under confining pressure and pore pressure and measures pressure-volume data. Confining pressure is always kept larger than the equilibrium pore-pressure but their values at each stage can be changed arbitrarily. The method considers gas leakage adjustments at high pore pressure. The analysis is simple and includes simultaneous solutions of two algebraic equations including the measured pressure-volume data. The model is validated at zero stress. The reference volume predicted at zero stress matches with that measured independently using the standard helium porosimeter. For sandstone and shale, the pore compressibility is on average 1x10-5 psi-1 and the effective stress coefficient is slightly higher than unity. The effective stress coefficient in isotropic elastic porous materials is known as the Biot’s coefficient and the value we predict indicates the relationship between the bulk and grain volume moduli. Interestingly the effective stress coefficient predicted using shale samples rich in clays and organic matter is slightly higher than that for sandstone. This indicates other features of the sample such as fine-scale texture (laminations, and anisotropy, etc.) could come into play during the fluid storage measurements.
    URI
    http://hdl.handle.net/1969.1/186366
    Subject
    Effective stress
    Effective stress coefficient
    pore compressibility
    shale rock
    storage capacity
    petrophysics of shale
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Aldana Gallego, Ivan Camilo (2019). A Laboratory Method for Estimation of Storage Capacity of Rock Samples Under Effective Stress. Master's thesis, Texas A&M University. Available electronically from http : / /hdl .handle .net /1969 .1 /186366.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV