Show simple item record

dc.contributor.advisorDu, Eric
dc.creatorTan, Kun
dc.date.accessioned2019-01-18T16:45:13Z
dc.date.available2020-08-01T06:38:23Z
dc.date.created2018-08
dc.date.issued2018-08-02
dc.date.submittedAugust 2018
dc.identifier.urihttps://hdl.handle.net/1969.1/174154
dc.description.abstractThe construction industry has been suffering from declining productivity since the 1950s. To tackle this issue, our industry has developed numerous productivity-tracking methods and systems. However, most of the existing tracking approaches focus on measuring work-level or team-level productivity. Some researchers have tried visual tracking with in-situ complexities or vibration data analysis for fall prediction. In this paper, we implemented vibration data analysis methods to efficiently track and identify ongoing construction action using vibration data. These data were collected from an accelerometer attached to power tools, representing 16 classes of construction actions frequently needed in pipeline work. We trained a support vector machine model and a decision tree model by feature matrixes and label matrixes generated from Y-axis values of raw data. We applied data preprocessing, frequency-domain feature extraction, training, 10-fold cross-validation, and parameter optimization. After cross-validation, results showed the support vector machine to have a better average accuracy result compared with the decision tree. Meanwhile, the support vector machine model successfully identified ongoing construction action. Overall, this research makes a significant contribution to applying machine-learning methods by vibration-data-processing techniques for tracking construction actions. In the future, construction managers can use this system to track and identify ongoing action on the site remotely, improving work efficiency and work-tracking robustness.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.subjectSupport Vector Machineen
dc.subjectConstruction Actionen
dc.subjectProductivity Trackingen
dc.titleVibration Data Analysis for Worker-Level Productivity Tracking in Construction Projectsen
dc.typeThesisen
thesis.degree.departmentConstruction Scienceen
thesis.degree.disciplineConstruction Managementen
thesis.degree.grantorTexas A & M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberFernández-Solís, José
dc.contributor.committeeMemberJi, Jim
dc.type.materialtexten
dc.date.updated2019-01-18T16:45:14Z
local.embargo.terms2020-08-01
local.etdauthor.orcid0000-0002-4690-9514


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record