Show simple item record

dc.contributor.advisorNarayanan, Krishna
dc.creatorWang, Ping-Chung
dc.date.accessioned2019-01-17T19:36:49Z
dc.date.available2020-05-01T06:23:27Z
dc.date.created2018-05
dc.date.issued2018-05-03
dc.date.submittedMay 2018
dc.identifier.urihttps://hdl.handle.net/1969.1/173584
dc.description.abstractWe consider a wireless network consisting of multiple source nodes, a set of relays and a destination node. Suppose the sources transmit their messages simultaneously to the relays and the destination aims to decode all the messages. At the physical layer, a conventional approach would be for the relay to decode the individual message one at a time while treating rest of the messages as interference. Compute-and-forward is a novel strategy which attempts to turn the situation around by treating the interference as a constructive phenomenon. In compute-and-forward, each relay attempts to directly compute a combination of the transmitted messages and then forwards it to the destination. Upon receiving the combinations of messages from the relays, the destination can recover all the messages by solving the received equations. When identical lattice codes are employed at the sources, error correction to integer combination of messages is a viable option by exploiting the algebraic structure of lattice codes. Therefore, compute-and-forward with lattice codes enables the relay to manage interference and perform error correction concurrently. It is shown that compute-and-forward exhibits substantial improvement in the achievable rate compared with other state-of-the-art schemes for medium to high signal-to-noise ratio regime. Despite several results that show the excellent performance of compute-and-forward, there are still important challenges to overcome before we can utilize compute-and- forward in practice. Some important challenges include the assumptions of \perfect timing synchronization "and \quasi-static fading", since these assumptions rarely hold in realistic wireless channels. So far, there are no conclusive answers to whether compute-and-forward can still provide substantial gains even when these assumptions are removed. When lattice codewords are misaligned and mixed up, decoding integer combination of messages is not straightforward since the linearity of lattice codes is generally not invariant to time shift. When channel exhibits time selectivity, it brings challenges to compute-and-forward since the linearity of lattice codes does not suit the time varying nature of the channel. Another challenge comes from the emerging technologies for future 5G communication, e.g., autonomous driving and virtual reality, where low-latency communication with high reliability is necessary. In this regard, powerful short channel codes with reasonable encoding/decoding complexity are indispensable. Although there are fruitful results on designing short channel codes for point-to-point communication, studies on short code design specifically for compute-and-forward are rarely found. The objective of this dissertation is threefold. First, we study compute-and-forward with timing-asynchronous users. Second, we consider the problem of compute-and- forward over block-fading channels. Finally, the problem of compute-and-forward for low-latency communication is studied. Throughout the dissertation, the research methods and proposed remedies will center around the design of lattice codes in order to facilitate the use of compute-and-forward in the presence of these challenges.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.subjectcompute-and-forwarden
dc.subjectlattice codeen
dc.subjectLDPC codeen
dc.subjecttiming asynchronous usersen
dc.subjectblock-fading channelsen
dc.subjectlow-latency communicationsen
dc.titleCompute-and-Forward Relay Networks with Asynchronous, Mobile, and Delay-Sensitive Usersen
dc.typeThesisen
thesis.degree.departmentElectrical and Computer Engineeringen
thesis.degree.disciplineElectrical Engineeringen
thesis.degree.grantorTexas A & M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberBoutros, Joseph
dc.contributor.committeeMemberSprintson, Alex
dc.contributor.committeeMemberJiang, Anxiao
dc.type.materialtexten
dc.date.updated2019-01-17T19:36:49Z
local.embargo.terms2020-05-01
local.etdauthor.orcid0000-0002-3024-1759


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record