Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Regional Microphysical and Radiative Effects of Aerosols

    Thumbnail
    View/Open
    LIN-DISSERTATION-2018.pdf (6.142Mb)
    Date
    2018-05-05
    Author
    Lin, Yun
    Metadata
    Show full item record
    Abstract
    In this study, the regional-scale aerosol effects are quantitatively assessed under various weather conditions by conducting numerical modeling studies to improve the understanding of physical processes involved in aerosol-cloud and aerosol-radiation interactions. A continental cloud complex consisting of three cloud regimes is simulated by the Weather Research and Forecast (WRF) model to investigate the aerosol microphysical effect (AME) and aerosol radiative effect (ARE). The results reveal that the responses of three cloud regimes to aerosols are jointly controlled by AME and ARE. The aerosol effects on the cloud complex are distinct from its individual cloud regime, highlighting that aerosol-cloud interactions for diverse cloud regimes and their transitions need to be carefully evaluated. The increasingly severe regional haze in China is associated with a high ratio of oxygenated organic aerosol over odd-oxygen concentrations during clean-to-hazy transition periods, corresponding to intensive photochemical activities in Beijing. Modeling studies using WRF with an aerosol radiative module indicate that the aerosol-planetary boundary layer interactions during severe haze might trigger a positive feedback loop to amplify PM pollution. The small negative forcing at top of atmosphere (TOA) by the heavy loading PM is a result of the strong cooling largely canceled out by the strong heating. The aging of black carbon can contribute significantly to the total PBL collapse and the total BC TOA forcing. The impacts of aerosols on a hurricane with ocean coupling is studied by using the WRF coupled with Regional Ocean Model System. The aerosol effect causes an expansion of storm circulation at the cost of the intensity. The aerosol-induced feedback of ocean coupling shows an appreciable influence on the mature storm. The storm destructiveness tends to be exacerbated by the aerosol effect due to the circulation expansion and corresponding structure modulations under polluted condition.
    URI
    http://hdl.handle.net/1969.1/173471
    Subject
    Aerosols
    Cloud
    Microphysical effect
    Radiative effect
    Haze
    hurricane
    Ocean coupling
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Lin, Yun (2018). Regional Microphysical and Radiative Effects of Aerosols. Doctoral dissertation, Texas A & M University. Available electronically from http : / /hdl .handle .net /1969 .1 /173471.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV