Show simple item record

dc.contributor.advisorHuff, Gregory H
dc.creatorAnand, Abhay Shankar
dc.date.accessioned2019-01-16T17:03:32Z
dc.date.available2019-12-01T06:33:46Z
dc.date.created2017-12
dc.date.issued2017-08-16
dc.date.submittedDecember 2017
dc.identifier.urihttp://hdl.handle.net/1969.1/173039
dc.description.abstractSoftware Defined Radio (SDR) provides a platform for a reconfigurable communication system that is solely controlled by a software program with access to certain hardware modules. SDRs are typically connected to very minimalistic, and often, manually controlled reconfigurable antenna(s) with no software control over radiation parameters. Hence, on a wave propagation front, the radiator does not capitalize on the software infrastructure it is connected to. This thesis presents a software controlled pattern and polarization reconfigurable microstrip patch antenna, with reconfigurable parasitic elements, for reconfigurable wireless networks and applications. The antenna is designed to operate from 2.4 GHz to 2.5 GHz, covering all channels (channels 1 through 14) of the 2.4 GHz ISM band. This broadband behavior is achieved with a two-layer stacked annular ring patch antenna, separated by a layer of foam. This antenna is dual probe-fed to achieve vertical and horizontal linear polarizations as well as right-hand and left-hand circular polarizations. Pattern reconfiguration is achieved with a third layer composed of microstrip patch elements acting as parasitic radiators, either reflecting or directing a beam in a direction, which are controlled by RF PIN diodes. Elements are placed such that pattern reconfiguration is possible across all polarization modes. Various iterations of the design process are discussed along with their issues and solutions. Other reconfiguration techniques are also suggested as part of future work.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.subjectpatch antennaen
dc.subjectreconfigurable antennaen
dc.subjectpolarizationen
dc.subjectpatternen
dc.subjectmicrostrip patchen
dc.subjectPIN diodeen
dc.titleA Software Controlled Polarization and Pattern Reconfigurable Microstrip Parasitic Array Antenna for a Market Mediated Software Defined Communications Systemen
dc.typeThesisen
thesis.degree.departmentElectrical and Computer Engineeringen
thesis.degree.disciplineElectrical Engineeringen
thesis.degree.grantorTexas A & M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberRobert D Nevels
dc.contributor.committeeMemberChamberland, Jean-Francois
dc.contributor.committeeMemberHsieh, Sheng-Jen
dc.type.materialtexten
dc.date.updated2019-01-16T17:03:32Z
local.embargo.terms2019-12-01
local.etdauthor.orcid0000-0002-1397-4168


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record