Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Quantum Error Correcting Codes and Fault-Tolerant Quantum Computation over Nice Rings

    Thumbnail
    View/Open
    LEE-DISSERTATION-2017.pdf (462.1Kb)
    Date
    2017-06-29
    Author
    Lee, Sangjun
    Metadata
    Show full item record
    Abstract
    Quantum error correcting codes play an essential role in protecting quantum information from the noise and the decoherence. Most quantum codes have been constructed based on the Pauli basis indexed by a finite field. With a newly introduced algebraic class called a nice ring, it is possible to construct the quantum codes such that their alphabet sizes are not restricted to powers of a prime. Subsystem codes are quantum error correcting schemes unifying stabilizer codes, decoherence free subspaces and noiseless subsystems. We show a generalization of subsystem codes over nice rings. Furthermore, we prove that free subsystem codes over a finite chain ring cannot outperform those over a finite field. We also generalize entanglement-assisted quantum error correcting codes to nice rings. With the help of the entanglement, any classical code can be used to derive the corresponding quantum codes, even if such codes are not self-orthogonal. We prove that an R-module with antisymmetric bicharacter can be decomposed as an orthogonal direct sum of hyperbolic pairs using symplectic geometry over rings. So, we can find hyperbolic pairs and commuting generators generating the check matrix of the entanglement-assisted quantum code. Fault-tolerant quantum computation has been also studied over a finite field. Transversal operations are the simplest way to implement fault-tolerant quantum gates. We derive transversal Clifford operations for CSS codes over nice rings, including Fourier transforms, SUM gates, and phase gates. Since transversal operations alone cannot provide a computationally universal set of gates, we add fault-tolerant implementations of doubly-controlled Z gates for triorthogonal stabilizer codes over nice rings. Finally, we investigate optimal key exchange protocols for unconditionally secure key distribution schemes. We prove how many rounds are needed for the key exchange between any pair of the group on star networks, linear-chain networks, and general networks.
    URI
    http://hdl.handle.net/1969.1/165859
    Subject
    Quantum error correcting codes
    Fault-tolerant quantum computation
    Nice rings
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Lee, Sangjun (2017). Quantum Error Correcting Codes and Fault-Tolerant Quantum Computation over Nice Rings. Doctoral dissertation, Texas A & M University. Available electronically from http : / /hdl .handle .net /1969 .1 /165859.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV