Show simple item record

dc.contributor.advisorKim, Moohyun
dc.creatorLee, Jooyoung
dc.date.accessioned2017-08-21T14:36:27Z
dc.date.available2019-05-01T06:07:06Z
dc.date.created2017-05
dc.date.issued2017-05-08
dc.date.submittedMay 2017
dc.identifier.urihttps://hdl.handle.net/1969.1/161392
dc.description.abstractThis thesis presents the numerical simulation results for a submerged floating tunnel (SFT) under hydrodynamic loads and seismic excitation. Time domain simulations are conducted via OrcaFlex and CHARM3D. SFTs with either vertical and inclined mooring lines were evaluated. The SFTs are assumed to have rigid body, and a Morison equation is used to calculate hydrodynamic loads on SFT. Regular and irregular waves are used in the simulations. In particular, the results of the numerical mockup of the regular wave condition is compared with the experimental conditions for validation of the numerical model. Furthermore, regular and real excitation data are applied to the anchor points of the mooring lines to simulate SFTs under seismic loads; also surge, heave, and mooring tensions are all compared. Different trends are obtained between the hydrodynamic and seismic effects. In the hydrodynamic loads, the motion of SFTs with vertical mooring line is more significant than the motion of those with inclined mooring line. Whereas, in seismic displacement conditions, the motion of SFTs with inclined mooring line is more significant than the motion of SFTs with vertical mooring line. Tension in SFT with vertical mooring line is greater than the tension in SFT with inclined mooring line. These results represent the unique behavior of SFTs under seismic excitation when compared with wave conditions, and suggest the SFT concept for seismic situations.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.subjectSubmerged Floating Tunnelen
dc.subjectDynamic analysisen
dc.subjectSeismic excitationen
dc.titleDynamic Response Analysis of Submerged Floating Tunnels under Hydrodynamic Loads and Seismic Excitationsen
dc.typeThesisen
thesis.degree.departmentOcean Engineeringen
thesis.degree.disciplineOcean Engineeringen
thesis.degree.grantorTexas A & M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberRobert, Randall E
dc.contributor.committeeMemberStoessel, Achim
dc.type.materialtexten
dc.date.updated2017-08-21T14:36:27Z
local.embargo.terms2019-05-01
local.etdauthor.orcid0000-0002-4964-534X


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record