Show simple item record

dc.contributor.advisorCizmas, Paul GA
dc.creatorBrown II, Robert Lee
dc.date.accessioned2016-09-22T19:47:04Z
dc.date.available2018-08-01T05:58:31Z
dc.date.created2016-08
dc.date.issued2016-07-26
dc.date.submittedAugust 2016
dc.identifier.urihttps://hdl.handle.net/1969.1/158046
dc.description.abstractThis dissertation examines the following subjects important to hypersonic aerothermoelastic flows: aerodynamic heating on a double-wedge airfoil, active cooling on a double-wedge airfoil, and aerothermoelastic panel utter with deformable supports. To facilitate this examination, an aerothermoelastic solver was created by coupling solvers for the structural elasticity and thermal diffusion equations to a Reynolds averaged Navier-Stokes (RANS) solver. Validation studies were performed on the aerodynamic, aerothermal, and aerothermoelastic configurations of the solver, which were then used to investigate the aforementioned subjects. The aerodynamic solver was validated for hypersonic heating simulations by comparison to the Fay-Riddell equation for the peak heat flux on a circular cylinder and by comparison to compressible boundary layer ow for heat flux into a at plate. A novel investigation was then performed of the heat flux on a double-wedge airfoil, looking at variations of heat flux due to angle of attack, wall temperature, Mach number, and altitude. The aerothermal solver was validated using experimental and computational data from the hypersonic heating of a spherical protuberance on a flat plate. The solver was then used in a novel study to analyze the effect of active cooling on the steady-state skin temperature of a double-wedge airfoil in hypersonic flow. Active cooling using a piecewise continuous cooling distribution resulted in sufficient temperature reduction, but also results in significant chordwise temperature gradients. The aerothermoelastic solver was validated using computational data from the analysis of panel utter. The solver was then used to examine the effects of deformable structural supports on the utter dynamics of the panel for the first time. Deformable supports along existing simply-supported boundaries were shown to be ineffective at improving resistance to utter or buckling. Deformable supports within a panel were shown to increase the utter resistance threefold and buckling resistance almost fivefold.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.subjecthypersonicen
dc.subjectpanel flutteren
dc.subjectaerothermalen
dc.subjectaeroelasticen
dc.subjectaerothermoelasticen
dc.subjectsimulationen
dc.titleNumerical Simulations of Hypersonic Aerothermoelastic Phenomenaen
dc.typeThesisen
thesis.degree.departmentAerospace Engineeringen
thesis.degree.disciplineAerospace Engineeringen
thesis.degree.grantorTexas A & M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberWhitcomb, John D
dc.contributor.committeeMemberReddy, Junuthula N
dc.contributor.committeeMemberStrganac, Thomas A
dc.type.materialtexten
dc.date.updated2016-09-22T19:47:04Z
local.embargo.terms2018-08-01
local.etdauthor.orcid0000-0003-0821-0339


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record