Show simple item record

dc.contributor.advisorZhu, Ding
dc.creatorMcGinley, Mark John
dc.date.accessioned2015-09-21T18:15:20Z
dc.date.available2015-09-21T18:15:20Z
dc.date.created2015-05
dc.date.issued2015-05-12
dc.date.submittedMay 2015
dc.identifier.urihttp://hdl.handle.net/1969.1/155300
dc.description.abstractProduction of hydrocarbons from low-permeability shale reservoirs has become economically feasible thanks in part to advances in horizontal drilling and hydraulic fracturing. Together, these two techniques help to create a network of highly-permeable fractures, which act as fluid conduits from the reservoir to the wellbore. The efficacy of a fracturing treatment can best be determined through fracture conductivity analysis. Fracture conductivity is defined as the product of fracture permeability and fracture width, and describes both how much and how easily fluid can flow through fractures. It is therefore directly related to well performance. The goal of this work is to explore fracture conductivity of Marcellus shale samples fractured in both horizontal and vertical orientations. The Marcellus shale, located primarily in Pennsylvania, Ohio, West Virginia, New York, and Maryland, is the largest gas-bearing shale formation in North America, and its development has significant implications on regional economies, the northeast United States’ energy infrastructure, and the availability of petrochemical plant feedstock. In this work, a series of experiments was conducted to determine the propped fracture conductivity of 23 different samples from Elimsport and Allenwood, Pennsylvania. Before conductivity measurements were taken, the pedigree of samples was verified through XRD analysis, elastic rock properties were measured and compared against literature values, and fracture surface contours were mapped and measured. Fracture conductivity of both horizontally and vertically-fracture samples was determined by measuring the pressure drop of nitrogen gas through a modified API conductivity cell. Results show that fracture conductivity varies as a function of fracture orientation only when anisotropy of the rock’s mechanical properties is pronounced. It is hypothesized that the anisotropy of Young’s Modulus and Poisson’s Ratio play a significant role in fracture mechanics, and therefore in the width of hydraulically-induced fractures. Ultimately, the experiments conducted as part of this work show that fracture conductivity trends are strongly tied to both proppant concentration and the rock’s mechanical properties.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.subjecthydraulic fracturingen
dc.subjectMarcellusen
dc.subjectshaleen
dc.subjectanisotropyen
dc.subjectpetroleumen
dc.subjectengineeringen
dc.titleThe Effects of Fracture Orientation and Anisotropy on Hydraulic Fracture Conductivity in the Marcellus Shale
dc.typeThesisen
thesis.degree.departmentPetroleum Engineeringen
thesis.degree.disciplinePetroleum Engineeringen
thesis.degree.grantorTexas A & M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberHill, Alfred D
dc.contributor.committeeMemberChester, Judith
dc.type.materialtexten
dc.date.updated2015-09-21T18:15:20Z
local.etdauthor.orcid0000-0001-7937-3149


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record