Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Graduate and Professional School
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Graduate and Professional School
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Trace Fission Product Ratios for Nuclear Forensics Attribution of Weapons-Grade Plutonium from Fast Breeder Reactor Blankets

    Thumbnail
    View/ Open
    OSBORN-THESIS-2014.pdf (1.670Mb)
    Date
    2014-08-13
    Author
    Osborn, Jeremy
    Metadata
    Show full item record
    Abstract
    A nuclear terrorist attack is one of the most serious threats to the national security of the United States, and in the wake of an attack, attribution of responsibility will be of the utmost importance. Plutonium, a by-product in spent nuclear reactor fuel, can be used in a nuclear weapon when obtained from reactor fuel discharged at a low burnup (1 MWd/kg). Characteristics of plutonium reprocessed from reactor fuel depend on factors such as the reactor type (thermal or fast reactor), fuel burnup, production history and the plutonium separation process used. Detailed understanding of the plutonium isotopic composition and fission product contaminant concentrations in separated plutonium would aid nuclear forensics activities aimed at source attribution in the case of interdicted smuggled plutonium, bolstering nuclear deterrence. The study presented here shows that trace fission product to plutonium ratios are amenable for nuclear forensics attribution. Through computational reactor core physics simulations, results are obtained for weapons-grade plutonium produced in a Fast Breeder Reactor (FBR). These fission product to plutonium ratios for the FBR are further compared with results reported elsewhere for a thermal Pressurized Heavy Water Reactor. This comparison of isotopic ratios results in substantial differences between fast and thermal neutron reactor systems, leading to the determination that a suite of selected isotopic ratios can attribute separated weapons-grade plutonium to a fast or thermal neutron source reactor system.
    URI
    https://hdl.handle.net/1969.1/153611
    Subject
    Nuclear forensics
    Plutonium production
    Fast Breeder Reactor
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Osborn, Jeremy (2014). Trace Fission Product Ratios for Nuclear Forensics Attribution of Weapons-Grade Plutonium from Fast Breeder Reactor Blankets. Master's thesis, Texas A & M University. Available electronically from https : / /hdl .handle .net /1969 .1 /153611.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartmentType

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV