Show simple item record

dc.contributor.advisorAmato, Nancy M
dc.creatorGiese, Andrew W
dc.date.accessioned2015-01-09T20:27:17Z
dc.date.available2015-01-09T20:27:17Z
dc.date.created2014-05
dc.date.issued2014-04-18
dc.date.submittedMay 2014
dc.identifier.urihttps://hdl.handle.net/1969.1/152671
dc.description.abstractModern multi-agent systems frequently use high-level planners to extract basic paths for agents, and then rely on local collision avoidance to ensure that the agents reach their destinations without colliding with one another or dynamic obstacles. One state-of-the-art local collision avoidance technique is Optimal Reciprocal Colli- sion Avoidance (ORCA). Despite being fast and efficient for circular-shaped agents, ORCA may deadlock when polygonal shapes are used. To address this shortcom- ing, we introduce Reciprocally-Rotating Velocity Obstacles (RRVO). RRVO extends ORCA by introducing a notion of rotation. This extension permits more realistic motion than ORCA for polygonally-shaped agents and does not suffer from as much deadlock. In this thesis, we present the theory of RRVO and show empirically that it does not suffer from the deadlock issue ORCA has, that it permits agents to reach goals faster, and that it has a comparable collision rate at the cost of some performance overhead.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.subjectMulti-agent systemsen
dc.subjectLocal Collision Avoidanceen
dc.subjectAutonomous Agentsen
dc.subjectCrowd Simulationen
dc.subjectVelocity Obstaclesen
dc.titleReciprocally-rotating Velocity Obstaclesen
dc.typeThesisen
thesis.degree.departmentComputer Science and Engineeringen
thesis.degree.disciplineComputer Scienceen
thesis.degree.grantorTexas A & M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberShell, Dylan
dc.contributor.committeeMemberChakravorty, Suman
dc.type.materialtexten
dc.date.updated2015-01-09T20:27:17Z


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record