Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Study of the Effects of Surface Morphology and Droplet Growth Dynamics on Condensation Heat Transfer

    Thumbnail
    View/ Open
    YAO-DISSERTATION-2014.pdf (4.987Mb)
    Date
    2014-04-23
    Author
    Yao, Chun-Wei
    Metadata
    Show full item record
    Abstract
    Condensation heat transfer has recently received a lot of renewed attention due to the development and use of surfaces with micro- and nano-scale features. Most of the new surfaces tend to promote drop-wise condensation, which leads to higher rates of heat transfer when compared with film wise condensation. In the current study, the effects of surface morphology and surface chemistry on the condensation mechanisms have been investigated using engineered surfaces. Firstly, hybrid surfaces consisting of an array of micropillars with hydrophobic and hydrophilic sites have been designed to exhibit a distinct Cassie-Baxter wetting behavior at different temperatures. Characterization experiments have revealed that hybrid surfaces depict a unique wetting behavior. Furthermore, more types of engineered surfaces were fabricated including nanoparticle-based hydrophobic surface, polytetrafluoroethylene (PTFE) surface, and self-assembled monolayers (SAMs) surface. Experiments have been conducted to determine the heat transfer performance of all engineered surfaces under a constant humidity level, surface-to-ambient temperature difference, and laminar flow conditions. Experimental results reveal that droplet sliding can have an important effect on heat transfer performance. Also, empirical heat transfer correlations have been postulated and fitted using experimental data using condensing and air temperature difference and Reynolds number as independent variables. Results indicate that the postulated correlations are in excellent agreement with experimental data. In addition, surface temperature data obtained using an advanced IR imaging system have been analyzed to determine the effects of the surface features on droplet growth dynamics. The non-invasive IR measurement technique has been helpful in understanding the droplet growth dynamics such as droplet coalescence. Results to date show that the static contact angles and sliding angles have marked effects on droplet growth and coalescence on the surfaces in the early stages of condensation. Furthermore, results also reveal that droplet sliding angles can have an important effect on droplet sliding motion and condensed droplet dynamics play an important role during the overall condensation process. In summary, the effect of surface morphology and droplet growth dynamics on heat transfer during condensation were investigated and elucidated.
    URI
    https://hdl.handle.net/1969.1/152590
    Subject
    Microfabrication
    Condensation heat transfer
    Hybrid Surface
    Hydrophobic
    Hydrophilic
    Microscopic measurement
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Yao, Chun-Wei (2014). Study of the Effects of Surface Morphology and Droplet Growth Dynamics on Condensation Heat Transfer. Doctoral dissertation, Texas A & M University. Available electronically from https : / /hdl .handle .net /1969 .1 /152590.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartmentType

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV