Show simple item record

dc.contributor.advisorDeMorrow, Sharon
dc.creatorMcMillin, Matthew Alexander
dc.date.accessioned2014-05-13T17:26:34Z
dc.date.available2015-12-01T06:31:20Z
dc.date.created2013-12
dc.date.issued2013-12-11
dc.date.submittedDecember 2013
dc.identifier.urihttps://hdl.handle.net/1969.1/151843
dc.description.abstractHepatic encephalopathy (HE) is a neurological complication that arises due to liver dysfunction and is associated with increased circulating ammonia and a systemic immune response. Treatment paradigms have attempted to minimize the metabolic and inflammatory consequences of liver failure. However, investigations into the specific cell signaling mechanisms between the liver and brain that induce these pathological processes are currently lacking. Both TGFβ1 and Shh are known to be upregulated in the liver and present in the circulation following liver damage. These studies employed the azoxymethane (AOM) model of acute liver failure in mice, the bile duct ligation (BDL) model of minimal HE in rats, and patients with liver cirrhosis who had HE to study cell signaling and pathological processes present during HE. Studies of specific cellular signaling mechanisms were performed in isolated primary neurons and immortalized brain endothelial cells. All pharmacological manipulations of hedgehog signaling, TGFβ signaling, and clodronate-liposome depletion of microglia were performed in AOM mice. Gli1 was upregulated in AOM, BDL, and HE patient cortices. Shh was upregulated in the liver and serum during HE, but had no effect on neurological decline. Liver TGFβ1 signaling was upregulated and had increased expression in cortical neurons. TGFβ1 suppressed neuronal Gli1 via SMAD3. The use of neutralizing antibodies against TGFβ generated neuroprotection during HE. The BBB was disrupted during AOM-induced HE and neutralizing antibodies against TGFβ significantly reduced permeability. Studies using bEnd.3 cells found that TGFβ1 suppressed Claudin-5 and increased MMP9 through a SMAD3-dependent mechanism. Depletion of microglia with clodronate liposomes in AOM mice was protective. Cortical CCL3/CCR1 axis signaling was elevated during HE and was reduced with neutralizing antibodies against TGFβ. Also, treatment with neutralizing antibodies against TGFβ reduced microgliosis and microglia activation. CCL3 KO mice had no changes in neurological decline compared to wild-type mice. Elevation of Gli1 or suppression of TGFβ1 was neuroprotective during HE. TGFβ1 increased BBB permeability and generated microglia activation and microgliosis during HE though this effect was not through the CCL3/CCR1 signaling axis. Gli1 or TGFβ1 may be therapeutic targets for the treatment and management of HE.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.subjectHepatic Encephalopathyen
dc.subjectTransforming Growth Factor Betaen
dc.titleThe Role of Transforming Growth Factor Beta in Hepatic Encephalopathy Pathogeneisen
dc.typeThesisen
thesis.degree.departmentInternal Medicineen
thesis.degree.disciplineNeuroscienceen
thesis.degree.grantorTexas A & M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberDi Patre, Pier L
dc.contributor.committeeMemberMeininger, Cynthia
dc.contributor.committeeMemberSanchez, Russell
dc.type.materialtexten
dc.date.updated2014-05-13T17:26:34Z
local.embargo.terms2015-12-01


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record