Show simple item record

dc.contributor.advisorQuigg, Antonietta S.
dc.creatorGore, Matthew
dc.date.accessioned2013-12-16T20:14:11Z
dc.date.available2015-08-01T05:48:34Z
dc.date.created2013-08
dc.date.issued2013-08-05
dc.date.submittedAugust 2013
dc.identifier.urihttps://hdl.handle.net/1969.1/151333
dc.description.abstractWith additional research on species characteristics and continued work towards cost effective production methods, algae are viewed as a possible alternative biofuel crop to current feedstocks such as corn. Current open pond production methods involve bubbling carbon dioxide (CO_(2)) gas into the media to provide a carbon source for photosynthesis, but this can be very inefficient releasing most CO_(2) back into the atmosphere. This research began by investigating the effect of sodium bicarbonate (NaHCO_(3)) in the growth media as an alternative carbon source to bubbling CO_(2) into the cultures. The second part examined if NaHCO_(3) could act as a lipid trigger in higher (10.0 g/L) concentrations. The microalgae species Dunaliella tertiolecta (Chlorophyta), Mayamaea spp. (Baciallariophyta) and Synechoccocus sp. (Cyanophyta) were grown with 0.0 g/L, 0.5g/L, 1.0 g/L, 2.0 g/L and 5.0 g/L dissolved NaHCO_(3) in modified seawater (f/2) media. To investigate effects of NaHCO_(3) on lipid accumulation, growth media cultures were divided into two ―lipid phase‖ medias containing either 0.0g/L (non-boosted) or 10.0 g/L (boosted) NaHCO_(3) treatments. Culture densities were determined using spectrophotometry, which showed both all three species are able to successfully grow in media ameliorated with these high NaHCO_(3) concentrations. Highest growth phase culture densities occurred in NaHCO_(3) concentrations of 2.0 g/L for D. tertiolecta and Mayamaea spp., and the 5.0 g/L treatment for Synechoccocus sp. Highest growth rates occurred in the 5.0 g/L NaHCO_(3) concentration treatments for D. tertiolecta, Mayamaea spp., and Synechoccocus sp. (0.205 d-1 ±0.010, 0.119 d-1 ±0.004, and 0.372 d-1 ±0.003 respectively). As a lipid accumulation trigger two of the three species (D. tertiolecta and Mayamaea spp) had their highest end day oil indices in a 10.0 g/L treatment. Highest oil indices occurred in boosted 5.0 g/L Dunaliella tertiolecta and 2.0 g/L Mayamaea spp. (13136 ± 895 and 62844 ± 8080 respectively (relative units)). The results obtained indicate NaHCO3 could be used as a photosynthetic carbon source for growth in all three species and a lipid trigger for D. tertiolecta and Mayamaea spp.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.subjectAlgaeen
dc.subjectBiofuelen
dc.subjectSodium Bicarbonateen
dc.subjectLipiden
dc.titleGrowth Rate of Marine Microalgal Species using Sodium Bicarbonate for Biofuelsen
dc.typeThesisen
thesis.degree.departmentMarine Biologyen
thesis.degree.disciplineMarine Biologyen
thesis.degree.grantorTexas A & M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberLacey, Ronald E.
dc.contributor.committeeMemberThornton, Daniel
dc.type.materialtexten
dc.date.updated2013-12-16T20:14:11Z
local.embargo.terms2015-08-01


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record