Show simple item record

dc.contributor.advisorSuh, Chii-Der
dc.creatorKuo, Chi-Wei 1982-
dc.date.accessioned2013-03-14T16:24:03Z
dc.date.available2013-03-14T16:24:03Z
dc.date.created2012-12
dc.date.issued2012-11-16
dc.date.submittedDecember 2012
dc.identifier.urihttps://hdl.handle.net/1969.1/148398
dc.description.abstractThree kinds of propagating waves physically admissible in a tubular section are derived to establish their dispersion characteristics in response to the presence of multi-layered viscoelastic coatings. One is the longitudinal wave that propagates in the axial direction. The other two are shear and longitudinal waves along the circumferential direction. To characterize the hollow cylinder with coating layers, wave dispersion and attenuation are studied using the “global matrix” technique. Since each layer is considered to be perfectly bonded to each other, displacement and strain continuity are imposed as the interfacial boundary conditions. Viscoelastic coating materials such as bitumen and epoxy serve to improve pipeline reliability, but they also dampen and dissipate wave energy. The viscoelastic materials are studied as well. By replacing the real material constants with complex material constants in the characteristic equation, the impact of the viscoelastic coatings on wave dispersion is established. Bisection method is followed to find the real and complex roots of the three characteristic equations derived. Roots thus obtained are manipulated to allow the phase velocity and attenuation dispersion to be plotted against frequency. The dispersion of phase velocity and wave attenuation for coated pipes are evaluated against a baseline model which is the bare, uncoated tubing to establish the propagation characteristics of the guided shear and longitudinal waves in the presence of multiple coating layers. The effects of increasing attenuation parameter and coating thickness are also investigated.en
dc.format.mimetypeapplication/pdf
dc.subjectviscoelasticen
dc.subjecthollow cylinderen
dc.subjectwave propagationen
dc.titleGuided Wave Propagation in Tubular Section with Multi-Layered Viscoelastic Coatingen
dc.typeThesisen
thesis.degree.departmentMechanical Engineeringen
thesis.degree.disciplineMechanical Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberFang, Gwo-Ping
dc.contributor.committeeMemberWen, Sy-Bor
dc.type.materialtexten
dc.date.updated2013-03-14T16:24:03Z


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record