Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On strong fault tolerance (or strong Menger-connectivity) of multicomputer networks

    Thumbnail
    View/Open
    etd-tamu-2004B-CPSC-Oh-2.pdf (458.7Kb)
    Date
    2004-11-15
    Author
    Oh, Eunseuk
    Metadata
    Show full item record
    Abstract
    As the size of networks increases continuously, dealing with networks with faulty nodes becomes unavoidable. In this dissertation, we introduce a new measure for network fault tolerance, the strong fault tolerance (or strong Menger-connectivity)in multicomputer networks, and study the strong fault tolerance for popular multicomputer network structures. Let G be a network in which all nodes have degree d. We say that G is strongly fault tolerant if it has the following property: Let Gf be a copy of G with at most d - 2 faulty nodes. Then for any pair of non-faulty nodes u and v in Gf , there are min{degf (u), degf (v)} node-disjoint paths in Gf from u to v, where degf (u) and degf (v) are the degrees of the nodes u and v in Gf, respectively. First we study the strong fault tolerance for the popular network structures such as star networks and hypercube networks. We show that the star networks and the hypercube networks are strongly fault tolerant and develop efficient algorithms that construct the maximum number of node-disjoint paths of nearly optimal or optimal length in these networks when they contain faulty nodes. Our algorithms are optimal in terms of their time complexity. In addition to studying the strong fault tolerance, we also investigate a more realistic concept to describe the ability of networks for tolerating faults. The traditional definition of fault tolerance, sustaining at most d - 1faulty nodes for a regular graph G of degree d, reflects a very rare situation. In many cases, there is a chance that a routing path between two given nodes can be constructed though the network may have more faulty nodes than its degree. In this dissertation, we study the fault tolerance of hypercube networks under a probability model. When each node of the n-dimensional hypercube network has an independent failure probability p, we develop algorithms that, with very high probability, can construct a fault-free path when the hypercube network can sustain up to 2np faulty nodes.
    URI
    https://hdl.handle.net/1969.1/1284
    Subject
    strong fault tolerance
    star networks
    hypercube networks
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Oh, Eunseuk (2004). On strong fault tolerance (or strong Menger-connectivity) of multicomputer networks. Doctoral dissertation, Texas A&M University. Texas A&M University. Available electronically from https : / /hdl .handle .net /1969 .1 /1284.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV