Show simple item record

dc.contributor.advisorScott, Stuart L.
dc.creatorXu, Jian
dc.date.accessioned2010-01-15T00:06:41Z
dc.date.accessioned2010-01-16T00:58:12Z
dc.date.available2010-01-15T00:06:41Z
dc.date.available2010-01-16T00:58:12Z
dc.date.created2008-05
dc.date.issued2009-05-15
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2808
dc.description.abstractTwin-screw multiphase pumps experience a severe decrease in efficiency, even the breakdown of pumping function, when operating under wet gas conditions. Additionally, field operations have revealed significant vibration and thermal issues which can lead to damage of the pump internals and expensive repairs and maintenance. There are limited models simulating the performance of twin-screw pump under these conditions. This project develops a pump-user oriented simulator to model the performance of twin-screw pumps under wet gas conditions. Experimental testing is conducted to verify the simulation results. Based on the simulations, an innovative solution is presented to improve the efficiency and prevent the breakdown of pumping function. A new model is developed based upon a previous Texas A&M twin-screw pump model. In this model, both the gas slip and liquid slip in the pump clearances are simulated. The mechanical model is coupled with a thermodynamic model to predict the pressure and temperature distribution along the screws. The comparison of experimental data and the predictions of both isothermal and non-isothermal models show a better match than previous models with Gas Volume Fraction (GVF) 95% and 98%. Compatible with the previous Texas A&M twin-screw pump model, this model can be used to simulate the twin-screw pump performance with GVF from 0% to 99%. Based on the effect of liquid viscosity, a novel solution is investigated with the newly developed model to improve the efficiency and reliability of twin-screw pump performance with GVF higher than 94%. The solution is to inject high viscosity liquid directly into the twin-screw pump. After the simulations of several different scenarios with various liquid injection rates and injection positions, we conclude that the volumetric efficiency increases with increasing liquid viscosity and injecting liquid in the suction is suggested.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectWet gas compressionen
dc.subjectmultiphase pumpen
dc.subjecttwin-screw pumpen
dc.titleModeling of wet gas compression in twin-screw multiphase pumpen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentPetroleum Engineeringen
thesis.degree.disciplinePetroleum Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberBarrufet, Maria A.
dc.contributor.committeeMemberMorrison, Gerald L.
dc.contributor.committeeMemberWattenbarger, Robert A.
dc.type.genreElectronic Dissertationen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record